MA mid PM: memetic algorithms with population management
暂无分享,去创建一个
[1] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[2] Kenneth Sörensen,et al. Distance measures based on the edit distance for permutation-type representations , 2007, J. Heuristics.
[3] Chris N. Potts,et al. Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..
[4] S. Ronald. Distance functions for order-based encodings , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[5] Pablo Moscato,et al. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .
[6] Stefan Voß,et al. Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..
[7] S. Ronald,et al. More distance functions for order-based encodings , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[8] Esko Ukkonen,et al. Finding Approximate Patterns in Strings , 1985, J. Algorithms.
[9] Jacques A. Ferland,et al. Scheduling using tabu search methods with intensification and diversification , 2001, Comput. Oper. Res..
[10] Philippe Baptiste,et al. A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates , 2004, Eur. J. Oper. Res..
[11] Colin R. Reeves,et al. Using Genetic Algorithms with Small Populations , 1993, ICGA.
[12] Michael L. Mauldin,et al. Maintaining Diversity in Genetic Search , 1984, AAAI.
[13] Samir W. Mahfoud. Crowding and Preselection Revisited , 1992, PPSN.
[14] Rafael Martí,et al. Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..
[15] Colin R. Reeves,et al. Genetic Algorithms for the Operations Researcher , 1997, INFORMS J. Comput..
[16] Chris N. Potts,et al. An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..
[17] E. Lawler. A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .
[18] Michael J. Shaw,et al. Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[19] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[20] Fred W. Glover,et al. A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.
[21] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[22] K. Sörensen,et al. A framework for robust and flexible optimisation using metaheuristics with applications in supply chain design , 2003 .
[23] Gerard Gaalman,et al. Proceedings of the workshop on production planning and control , 1996 .
[24] Michael J. Fischer,et al. The String-to-String Correction Problem , 1974, JACM.
[25] Alain Hertz,et al. Guidelines for the use of meta-heuristics in combinatorial optimization , 2003, Eur. J. Oper. Res..
[26] Rafael Martí,et al. Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..
[27] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[28] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .