Classification modeling of support vector machine (SVM) and random forest in predicting pharmacodynamics interactions
暂无分享,去创建一个
F M Afendi | A Fitrianto | N A Farhana | S H Wijaya | A. Fitrianto | F. M. Afendi | S. Wijaya | N. Farhana | F. Afendi
[1] R. Sharan,et al. INDI: a computational framework for inferring drug interactions and their associated recommendations , 2012, Molecular systems biology.
[2] Md Zahidul Islam,et al. One-vs-all binarization technique in the context of random forest , 2015, ESANN.
[3] Diana Purwitasari,et al. Deteksi Gempa Berdasarkan Data Twitter Menggunakan Decision Tree, Random Forest, dan SVM , 2017 .
[4] Tom Fawcett,et al. An introduction to ROC analysis , 2006, Pattern Recognit. Lett..
[5] John T. E. Richardson,et al. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. , 2011 .
[6] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[7] Hongkang Mei,et al. Systematic Prediction of Pharmacodynamic Drug-Drug Interactions through Protein-Protein-Interaction Network , 2013, PLoS Comput. Biol..
[8] P. Bork,et al. Drug Target Identification Using Side-Effect Similarity , 2008, Science.
[9] Jian Gao,et al. A new sampling method for classifying imbalanced data based on support vector machine ensemble , 2016, Neurocomputing.