Near-infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity.

We estimated a blood flow index, O2 supply index, and O2 consumption index from near-infrared (NIR) signals during venous occlusion imposed at rest and immediately after handgrip exercise with loads equal to 5, 10, 15, 20, 25, and 30% of the maximum voluntary contraction. We also estimated forearm blood flow (BFfa) by strain-gauge plethysmography and forearm O2 consumption (VO2fa) by the invasive method. There was a significant correlation between the rate of increase in total hemoglobin during venous occlusion obtained from NIR signals and BFfa in each subject (r = 0.853 approximately 0.981, P < 0.001). There was also a significant correlation (r = 0.854 approximately 0.944, P < 0.001) between the O2 consumption index estimated from NIR signals and VO2fa. The mean values for O2 supply index in five subjects increased with exercise intensity, while the O2 consumption index showed no further increase about 25% of maximum voluntary contraction. We found significant positive correlations between the O2 supply index and BFfa (r = 0.986, P < 0.001) and the O2 consumption index and VO2fa (r = 0.976, P < 0.001) during exercise at 5-30% of maximum voluntary contraction. These results demonstrate that analysis of NIR signals during venous occlusion provides an advantageous method of estimation of O2 supply and consumption in working muscles during exercise of varying intensity.