Multifunctional Metasurfaces Based on the “Merging” Concept and Anisotropic Single-Structure Meta-Atoms

Metasurfaces offer great opportunities to control electromagnetic (EM) waves, attracting intensive attention in science and engineering communities. Recently, many efforts were devoted to multifunctional metasurfaces integrating different functionalities into single flat devices. In this article, we present a concise review on the development of multifunctional metasurfaces, focusing on the design strategies proposed and functional devices realized. We first briefly review the early efforts on designing such systems, which simply combine multiple meta-structures with distinct functionalities to form multifunctional devices. To overcome the low-efficiency and functionality cross-talking issues, a new strategy was proposed, in which the meta-atoms are carefully designed single structures exhibiting polarization-controlled transmission/reflection amplitude/phase responses. Based on this new scheme, various types of multifunctional devices were realized in different frequency domains, which exhibit diversified functionalities (e.g., focusing, deflection, surface wave conversion, multi-beam emissions, etc.), for both pure-reflection and pure-transmission geometries or even in the full EM space. We conclude this review by presenting our perspectives on this fast-developing new sub-field, hoping to stimulate new research outputs that are useful in future applications.

[1]  Lei Zhou,et al.  Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces , 2015 .

[2]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[3]  Xianzhong Chen,et al.  Multichannel Polarization‐Controllable Superpositions of Orbital Angular Momentum States , 2017, Advanced materials.

[4]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[5]  X. Wan,et al.  Planar bifunctional Luneburg‐fisheye lens made of an anisotropic metasurface , 2014 .

[6]  Byoungho Lee,et al.  Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. , 2017, Optics express.

[7]  Byoungho Lee,et al.  Compact Generation of Airy Beams with C‐Aperture Metasurface , 2017 .

[8]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[9]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[10]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[11]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[12]  Qiong He,et al.  A transparent metamaterial to manipulate electromagnetic wave polarizations. , 2011, Optics letters.

[13]  Sergey I. Bozhevolnyi,et al.  Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons , 2014, Light: Science & Applications.

[14]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[15]  Xin Li,et al.  Flat metasurfaces to focus electromagnetic waves in reflection geometry. , 2012, Optics letters.

[16]  Shanhui Fan,et al.  Highly tunable refractive index visible-light metasurface from block copolymer self-assembly , 2016, Nature Communications.

[17]  Fei Ding,et al.  Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence , 2017, Light: Science & Applications.

[18]  Erez Hasman,et al.  Multiple Wavefront Shaping by Metasurface Based on Mixed Random Antenna Groups , 2015 .

[19]  Stefan Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapor deposition , 2008 .

[20]  Xiaoliang Ma,et al.  A planar chiral meta-surface for optical vortex generation and focusing , 2015, Scientific Reports.

[21]  M. J. Lockyear,et al.  Microwave surface-plasmon-like modes on thin metamaterials. , 2009, Physical review letters.

[22]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[23]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[24]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[25]  Jinghua Teng,et al.  Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices , 2016, Advanced materials.

[26]  Qiang Cheng,et al.  Bifunctional metasurface for electromagnetic cloaking and illusion , 2015 .

[27]  N. Engheta,et al.  Traditional and emerging materials for optical metasurfaces , 2017 .

[28]  Yan Zhang,et al.  Ultra-wide band reflective metamaterial wave plates for terahertz waves , 2017 .

[29]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[30]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[31]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[32]  Wei Wang,et al.  Multichannel Metasurface for Simultaneous Control of Holograms and Twisted Light Beams , 2017 .

[33]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[34]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[35]  He-Xiu Xu,et al.  Polarization-independent broadband meta-surface for bifunctional antenna. , 2016, Optics express.

[36]  Peter Uhd Jepsen,et al.  A new method for obtaining transparent electrodes. , 2012, Optics express.

[37]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[38]  Lei Zhou,et al.  High‐Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries , 2017 .

[39]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[40]  Lei Zhou,et al.  Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings , 2016 .

[41]  Wenshan Cai,et al.  Circular dichroism metamirrors with near-perfect extinction , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[42]  Xianzhong Chen,et al.  Metasurface Device with Helicity‐Dependent Functionality , 2016 .

[43]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[44]  Shuangchun Wen,et al.  Realization of Tunable Photonic Spin Hall Effect by Tailoring the Pancharatnam-Berry Phase , 2013, Scientific Reports.

[45]  Qiang Cheng,et al.  Frequency‐Dependent Dual‐Functional Coding Metasurfaces at Terahertz Frequencies , 2016 .

[46]  John A. Rogers,et al.  Three‐Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks , 2004 .

[47]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[48]  Xiang Wan,et al.  Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface , 2015 .

[49]  Honglin Yu,et al.  Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces. , 2014, Optics letters.

[50]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[51]  Shan-Shan Jiang,et al.  Controlling the Polarization State of Light with a Dispersion-Free Metastructure , 2014 .

[52]  Guang-Ming Wang,et al.  Highly efficient multifunctional metasurface for high-gain lens antenna application , 2017 .

[53]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[54]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[55]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[56]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[57]  Yongtian Wang,et al.  Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces , 2015, Advanced materials.

[58]  He-Xiu Xu,et al.  Bifunctional Pancharatnam‐Berry Metasurface with High‐Efficiency Helicity‐Dependent Transmissions and Reflections , 2018 .

[59]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[60]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[61]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[62]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[63]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[64]  Douglas H. Werner,et al.  Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating , 2012 .

[65]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[66]  Gordon Wetzstein,et al.  Photonic Multitasking Interleaved Si Nanoantenna Phased Array. , 2016, Nano letters.

[67]  Andrea Alù,et al.  A Reconfigurable Active Huygens' Metalens. , 2017, Advanced materials.

[68]  Vladimir M. Shalaev,et al.  Photonic spin Hall effect in gap─plasmon metasurfaces for on-chip chiroptical spectroscopy , 2015 .

[69]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[70]  Lei Zhou,et al.  Making a continuous metal film transparent via scattering cancellations , 2012 .

[71]  Tie Jun Cui,et al.  Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces , 2015, Scientific Reports.

[72]  Guohua Zhai,et al.  Simultaneous Realization of Anomalous Reflection and Transmission at Two Frequencies using Bi-functional Metasurfaces , 2018, Scientific Reports.

[73]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[74]  Xianzhong Chen,et al.  Longitudinal Multifoci Metalens for Circularly Polarized Light , 2015 .

[75]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[76]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[77]  Qiaofeng Tan,et al.  Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens , 2013 .

[78]  Ru-Wen Peng,et al.  Metallic stereostructured layer: An approach for broadband polarization state manipulation , 2014 .

[79]  Ning Dai,et al.  Tailor the functionalities of metasurfaces based on a complete phase diagram , 2016, 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM).

[80]  Shanhui Fan,et al.  Planar immersion lens with metasurfaces , 2015, 1503.03825.

[81]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[82]  Shiwei Tang,et al.  Flexible control of highly‐directive emissions based on bifunctional metasurfaces with low polarization cross‐talking , 2017 .

[83]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[84]  Lei Zhou,et al.  High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations , 2016, Light: Science & Applications.

[85]  S. Fan,et al.  Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms , 2016 .

[86]  Xianzhong Chen,et al.  Multifunctional metasurface lens for imaging and Fourier transform , 2016, Scientific Reports.

[87]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[88]  Minghui Hong,et al.  Orbital Angular Momentum Multiplexing and Demultiplexing by a Single Metasurface , 2017 .

[89]  Yang Cao,et al.  Highly efficient beam steering with a transparent metasurface. , 2013, Optics express.

[90]  Sergey I. Bozhevolnyi,et al.  Multifunctional meta-mirror: polarization splitting and focusing , 2017, 1709.04257.

[91]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[92]  David R. Smith,et al.  Toward Multispectral Imaging with Colloidal Metasurface Pixels , 2017, Advanced materials.

[93]  He-Xiu Xu,et al.  Ultra-Thin Polarization Beam Splitter Using 2-D Transmissive Phase Gradient Metasurface , 2015, IEEE Transactions on Antennas and Propagation.

[94]  Anthony Grbic,et al.  Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis , 2014 .

[95]  Byoungho Lee,et al.  Complete amplitude and phase control of light using broadband holographic metasurfaces. , 2017, Nanoscale.

[96]  H. Mosallaei,et al.  Birefringent reflectarray metasurface for beam engineering in infrared. , 2013, Optics letters.