Molecular Interactions in the Assembly of Coronaviruses

[1]  J. David-Ferreira,et al.  A N E L E C T R O N , 2022 .

[2]  D. Kindig,et al.  Growth and Intracellular Development of a New Respiratory Virus , 1967, Journal of virology.

[3]  R. Chanock,et al.  Morphogenesis of Avian Infectious Bronchitis Virus and a Related Human Virus (Strain 229E) , 1967, Journal of virology.

[4]  E. H. Lennette,et al.  Electron microscopic studies of coronavirus. , 1971, The Journal of general virology.

[5]  D. A. Kennedy,et al.  Isolation and Morphology of the Internal Component of Human Coronavirus, Strain 229E , 2004, Intervirology.

[6]  D. Garwes,et al.  Isolation of subviral components from transmissible gastroenteritis virus. , 1976, The Journal of general virology.

[7]  D. Garwes,et al.  The Polypeptides of Haemagglutinating Encephalomyelitis Virus and Isolated Subviral particles , 1977 .

[8]  H. Davies,et al.  Ribonucleoprotein-like structures from coronavirus particles. , 1978, The Journal of general virology.

[9]  F. Taguchi,et al.  Mouse hepatitis virus strain MHV-S: formation of pseudotypes with a murine leukemia virus envelope. , 1978, Intervirology.

[10]  V. ter meulen,et al.  Structural polypeptides of the murine coronavirus JHM. , 1979, The Journal of general virology.

[11]  J. Robb,et al.  Pathogenic murine coronaviruses I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses , 1979, Virology.

[12]  M. Lai,et al.  Phosphoproteins of murine hepatitis viruses , 1979, Journal of virology.

[13]  M. Ferguson,et al.  Preliminary studies on the isolation of coronavirus 229E nucleocapsids , 1979, FEMS Microbiology Letters.

[14]  C. Howard,et al.  The disruption of infectious bronchitis virus (IBV-41 strain) with Triton X-100 detergent , 1980, Journal of Virological Methods.

[15]  H. Davies,et al.  Two particle types of avian infectious bronchitis virus. , 1980, The Journal of general virology.

[16]  K. Holmes,et al.  Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid , 1980, Journal of virology.

[17]  R. Knobler,et al.  In vivo and in vitro Models of Demyelinating Diseases , 1982, Intervirology.

[18]  K. Holmes,et al.  Evolution of a coronavirus during persistent infection in vitro. , 1981, Advances in experimental medicine and biology.

[19]  H. Davies,et al.  Ribonucleoprotein of avian infectious bronchitis virus. , 1981, The Journal of general virology.

[20]  Marian C. Horzinek,et al.  Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) , 1981, Virology.

[21]  K. Holmes,et al.  Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein , 1981, Virology.

[22]  J. Robb,et al.  The replication of murine coronaviruses in enucleated cells , 1981, Virology.

[23]  Marian C. Horzinek,et al.  Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin , 1981, Journal of virology.

[24]  Marian C. Horzinek,et al.  Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes , 1981, Journal of virology.

[25]  S. Stohlman,et al.  Host cell nuclear function and murine hepatitis virus replication. , 1981, The Journal of general virology.

[26]  D. Stern,et al.  Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins , 1982, Journal of virology.

[27]  R. Knobler,et al.  In vivo and in vitro Models of Demyelinating Diseases , 1982, Intervirology.

[28]  K. Holmes,et al.  Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures , 1982, Virology.

[29]  D. Cavanagh Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. , 1983, The Journal of general virology.

[30]  J. Fleming,et al.  Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein , 1983, Virology.

[31]  D. Cavanagh Coronavirus IBV: structural characterization of the spike protein. , 1983, The Journal of general virology.

[32]  B. Hogue,et al.  Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59 , 1984, Journal of virology.

[33]  D. Garwes,et al.  Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. , 1984, Advances in experimental medicine and biology.

[34]  J. Armstrong,et al.  Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus , 1984, Nature.

[35]  J. Tooze,et al.  Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. , 1984, European journal of cell biology.

[36]  J. Armstrong,et al.  Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Holmes,et al.  Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion , 1985, Journal of virology.

[38]  D. Brian,et al.  Bovine coronavirus hemagglutinin protein , 1985, Virus Research.

[39]  G. Nakamura,et al.  Intracellular assembly and packaging of hepatitis B surface antigen particles occur in the endoplasmic reticulum , 1986, Journal of virology.

[40]  S. Perlman,et al.  MHV nucleocapsid synthesis in the presence of cycloheximide and accumulation of negative strand MHV RNA , 1986, Virus Research.

[41]  J. Lenstra,et al.  Predicted membrane topology of the coronavirus protein E1. , 1986, Biochemistry.

[42]  M. Lai,et al.  Phosphorylation of the mouse hepatitis virus nucleocapsid protein , 1986, Biochemical and Biophysical Research Communications.

[43]  D. Pappin,et al.  Coronavirus IBV glycopolypeptides: locational studies using proteases and saponin, a membrane permeabilizer , 1986, Virus Research.

[44]  M. Frana,et al.  RNA-binding proteins of coronavirus MHV: Detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay , 1986, Virology.

[45]  B. Hogue,et al.  Structural proteins of human respiratory coronavirus OC43 , 1986, Virus Research.

[46]  K. Holmes,et al.  In vitro replication of mouse hepatitis virus strain A59 , 1987, Journal of virology.

[47]  C. Machamer,et al.  A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region , 1987, The Journal of cell biology.

[48]  J. Lenstra,et al.  Sequence and structure of the coronavirus peplomer protein. , 1987, Advances in experimental medicine and biology.

[49]  J. Lenstra,et al.  Evidence for a coiled-coil structure in the spike proteins of coronaviruses☆ , 1987, Journal of Molecular Biology.

[50]  P. Rottier,et al.  Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region , 1987, Journal of virology.

[51]  L. Babiuk,et al.  Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins☆ , 1987, Virology.

[52]  J. Tooze,et al.  Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells , 1987, The Journal of cell biology.

[53]  R. Baric,et al.  Specific interaction between coronavirus leader RNA and nucleocapsid protein , 1988, Journal of virology.

[54]  H. Laude,et al.  Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1 , 1988, Journal of virology.

[55]  V. Lingappa,et al.  Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor , 1988, The Journal of cell biology.

[56]  T. Mayer,et al.  Membrane integration and intracellular transport of the coronavirus glycoprotein E1, a class III membrane glycoprotein. , 1988, Journal of Biological Chemistry.

[57]  Marian C. Horzinek,et al.  Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus , 1988, Virology.

[58]  R. Baric,et al.  Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription , 1988, Journal of virology.

[59]  P. Palese,et al.  Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Palese,et al.  The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity , 1988, Journal of virology.

[61]  B. Hogue,et al.  Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. , 1989, The Journal of general virology.

[62]  M. Lai,et al.  Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus , 1989, Virology.

[63]  H. Vennema,et al.  Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice , 1989, Virology.

[64]  L. Babiuk,et al.  Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. , 1989, The Journal of general virology.

[65]  Marian C. Horzinek,et al.  Expression of MHV-A59 M glycoprotein: effects of deletions on membrane integration and intracellular transport. , 1990, Advances in experimental medicine and biology.

[66]  B. Delmas,et al.  Assembly of coronavirus spike protein into trimers and its role in epitope expression , 1990, Journal of virology.

[67]  C. Pringle,et al.  Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. , 1990, The Journal of general virology.

[68]  P. Masters,et al.  Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein , 1990, Virology.

[69]  M. Farquhar,et al.  The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Armstrong,et al.  Lysosomal sorting mutants of coronavirus E1 protein, a Golgi membrane protein. , 1990, Journal of cell science.

[71]  H. Vennema,et al.  Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly , 1990, Journal of virology.

[72]  M. Pfleiderer,et al.  Functional analysis of the coronavirus MHV-JHM surface glycoproteins in vaccinia virus recombinants. , 1990, Advances in experimental medicine and biology.

[73]  K. Holmes,et al.  Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion , 1990, Journal of virology.

[74]  B. Hogue,et al.  Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein , 1990, Journal of virology.

[75]  H. Vennema,et al.  Biosynthesis and function of the coronavirus spike protein. , 1990, Advances in experimental medicine and biology.

[76]  A. R. Smith,et al.  Identification of a new membrane-associated polypeptide specified by the coronavirus infectious bronchitis virus. , 1990, The Journal of general virology.

[77]  D. Brian,et al.  Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture , 1990, Journal of virology.

[78]  D. Brian,et al.  Minus-strand copies of replicating coronavirus mRNAs contain antileaders , 1991, Journal of virology.

[79]  J. Armstrong,et al.  The Golgi sorting domain of coronavirus E1 protein. , 1991, Journal of cell science.

[80]  M. Buchmeier,et al.  Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein , 1991, Journal of virology.

[81]  S. Inglis,et al.  Association of the infectious bronchitis virus 3c protein with the virion envelope , 1991, Virology.

[82]  M. Lai,et al.  Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses , 1991, Virology.

[83]  C. Machamer,et al.  A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein , 1991, The Journal of cell biology.

[84]  E. Paoletti,et al.  Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. , 1991, Virology.

[85]  C. Dieffenbach,et al.  Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV , 1991, Journal of virology.

[86]  W. Spaan,et al.  A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs , 1991, Journal of virology.

[87]  H. Klenk,et al.  Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity , 1991, Virology.

[88]  K. Holmes,et al.  Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Herrler,et al.  The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant , 1991, Journal of virology.

[90]  S. Dales,et al.  Endosomal association of a protein phosphatase with high dephosphorylating activity against a coronavirus nucleocapsid protein , 1991, FEBS Letters.

[91]  G. Herrler,et al.  High level transient expression of the murine coronavirus haemagglutinin-esterase. , 1991, The Journal of general virology.

[92]  Marian C. Horzinek,et al.  O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. , 1992, Journal of Biological Chemistry.

[93]  C. A. Koetzner,et al.  Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination , 1992, Journal of virology.

[94]  D. Brian,et al.  The nucleocapsid protein gene of bovine coronavirus is bicistronic , 1992, Journal of virology.

[95]  A. Look,et al.  Human aminopeptidase N is a receptor for human coronavirus 229E , 1992, Nature.

[96]  B. Delmas,et al.  Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV , 1992, Nature.

[97]  H. Laude,et al.  TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions , 1992, Virology.

[98]  J. Keck,et al.  Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus , 1992, Virology.

[99]  P. Talbot,et al.  Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation. , 1992, The Journal of general virology.

[100]  M. Lai,et al.  Hemagglutinin-esterase-specific monoclonal antibodies alter the neuropathogenicity of mouse hepatitis virus , 1992, Journal of virology.

[101]  G. Herrler,et al.  Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. , 1992, The Journal of general virology.

[102]  B. Hogue,et al.  The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated , 1992, Virology.

[103]  S. Makino,et al.  Identification and characterization of a coronavirus packaging signal , 1992, Journal of virology.

[104]  M. Buchmeier,et al.  Cell receptor-independent infection by a neurotropic murine coronavirus , 1992, Virology.

[105]  L. Babiuk,et al.  Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. , 1992, The Journal of general virology.

[106]  H. Laude,et al.  Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus , 1992, Journal of virology.

[107]  G. Herrler,et al.  Structural and Functional Analysis of the Surface Protein of Human Coronavirus OC43 , 1993, Virology.

[108]  S. Chung,et al.  Retention of a cis Golgi protein requires polar residues on one face of a predicted alpha-helix in the transmembrane domain. , 1993, Molecular biology of the cell.

[109]  N. Beauchemin,et al.  Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59 , 1993, Journal of virology.

[110]  B. Delmas,et al.  Further characterization of aminopeptidase-N as a receptor for coronaviruses. , 1993, Advances in experimental medicine and biology.

[111]  R. Lamb,et al.  Folding and assembly of viral membrane proteins. , 1993, Virology.

[112]  D. Cavanagh,et al.  Presence of Subgenomic mRNAs in Virions of Coronavirus IBV , 1993, Virology.

[113]  Marian C. Horzinek,et al.  Complex formation between the spike protein and the membrane protein during mouse hepatitis virus assembly. , 1993, Advances in Experimental Medicine and Biology.

[114]  M. Lai,et al.  The detection and characterization of multiple hemagglutinin-esterase (HE)-defective viruses in the mouse brain during subacute demyelination induced by mouse hepatitis virus. , 1993, Virology.

[115]  H. Vennema,et al.  Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins , 1993, Journal of virology.

[116]  R. Anderson,et al.  Membrane and Phospholipid Binding by Murine Coronaviral Nucleocapsid N Protein , 1993, Virology.

[117]  O. Weisz,et al.  Oligomerization of a membrane protein correlates with its retention in the Golgi complex , 1993, The Journal of cell biology.

[118]  G. Nelson,et al.  Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. , 1993, The Journal of general virology.

[119]  J. Grosclaude,et al.  Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein , 1994, Journal of virology.

[120]  F. Taguchi,et al.  Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein , 1994, Journal of virology.

[121]  S. Weiss,et al.  Mouse hepatitis virus gene 5b protein is a new virion envelope protein. , 1994, Virology.

[122]  H. Geuze,et al.  The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. , 1994, The Journal of biological chemistry.

[123]  M. Lai,et al.  Coronavirus: how a large RNA viral genome is replicated and transcribed. , 1994, Infectious agents and disease.

[124]  H. Geuze,et al.  Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding , 1994, Journal of virology.

[125]  C. A. Koetzner,et al.  Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination , 1995, Journal of virology.

[126]  J. Rossen,et al.  Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein , 1995, Journal of virology.

[127]  L. Weiner,et al.  Neuropathogenicity of mouse hepatitis virus JHM isolates differing in hemagglutinin-esterase protein expression. , 1995, Journal of neurovirology.

[128]  H. Vennema,et al.  The Molecular Genetics of Feline Coronaviruses: Comparative Sequence Analysis of the ORF7a/7b Transcription Unit of Different Biotypes , 1995, Virology.

[129]  P. Rottier The Coronavirus Membrane Glycoprotein , 1995 .

[130]  H. Klenk,et al.  The Coronaviridae , 1995, The Viruses.

[131]  C. A. Koetzner,et al.  Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins , 1995, Journal of virology.

[132]  G. Herrler,et al.  Analysis of cellular receptors for human coronavirus OC43. , 1995, Advances in experimental medicine and biology.

[133]  Marian C. Horzinek,et al.  Oligomerization of a trans-Golgi/ trans-Golgi Network Retained Protein Occurs in the Golgi Complex and May Be Part of Its Retention (*) , 1995, The Journal of Biological Chemistry.

[134]  M. Raamsman,et al.  Envelope glycoprotein interactions in coronavirus assembly , 1995, The Journal of cell biology.

[135]  H. Laude,et al.  The Coronavirus Nucleocapsid Protein , 1995 .

[136]  I. Brierley,et al.  The Coronavirus Nonstructural Proteins , 1995 .

[137]  B. Hogue,et al.  The Coronavirus Hemagglutinin Esterase Glycoprotein , 1995 .

[138]  C. Mandl,et al.  Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form , 1995, Journal of virology.

[139]  G. Godeke,et al.  The phospholipid composition of enveloped viruses depends on the intracellular membrane through which they bud. , 1995, Biochemical Society transactions.

[140]  C. A. Koetzner,et al.  A conditional-lethal murine coronavirus mutant that fails to incorporate the spike glycoprotein into assembled virions , 1995, Virus Research.

[141]  M. Lai,et al.  Coronavirus Defective-Interfering RNA as an Expression Vector: The Generation of a Pseudorecombinant Mouse Hepatitis Virus Expressing Hemagglutinin-Esterase , 1995, Virology.

[142]  W. Spaan,et al.  Mutational Analysis of the Murine Coronavirus Spike Protein: Effect on Cell-to-Cell Fusion , 1995, Virology.

[143]  J. Rossen,et al.  Coronavirus infection of polarized epithelial cells , 1995, Trends in Microbiology.

[144]  D. Cavanagh The Coronavirus Surface Glycoprotein , 1995 .

[145]  L. Enjuanes,et al.  Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion , 1995, Journal of virology.

[146]  W. Luytjes Coronavirus Gene Expression , 1995 .

[147]  H. Vennema,et al.  Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. , 1996, The EMBO journal.

[148]  H. Koerten,et al.  The Production of Recombinant Infectious DI-Particles of a Murine Coronavirus in the Absence of Helper Virus , 1996, Virology.

[149]  L. Enjuanes,et al.  The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins , 1996, Journal of virology.

[150]  E. Collisson,et al.  The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3' terminus of the genome. , 1996, Virology.

[151]  G. Wilson,et al.  Regulation of the Initiation of Coronavirus JHM Infection in Primary Oligodendrocytes and L-2 Fibroblasts , 1996, Virology.

[152]  Robert H Levis,et al.  Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I , 1996, Journal of virology.

[153]  D. Brian,et al.  cis Requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication , 1996, Journal of virology.

[154]  F. Taguchi,et al.  Analysis of the receptor-binding site of murine coronavirus spike protein , 1996, Journal of virology.

[155]  Krishna Shankara Narayanan,et al.  Murine coronavirus packaging signal confers packaging to nonviral RNA , 1997, Journal of virology.

[156]  K. Saeki,et al.  Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants , 1997, Journal of virology.

[157]  W. Spaan,et al.  Characterization of two temperature-sensitive mutants of coronavirus mouse hepatitis virus strain A59 with maturation defects in the spike protein , 1997, Journal of virology.

[158]  V. Nguyễn,et al.  Protein interactions during coronavirus assembly , 1997, Journal of virology.

[159]  R. Molenkamp,et al.  Identification of a Specific Interaction between the Coronavirus Mouse Hepatitis Virus A59 Nucleocapsid Protein and Packaging Signal☆ , 1997, Virology.

[160]  M. Lai RNA-protein interactions in the regulation of coronavirus RNA replication and transcription. , 1997, Biological chemistry.

[161]  Krishna Shankara Narayanan,et al.  Assembled coronavirus from complementation of two defective interfering RNAs , 1997, Journal of virology.

[162]  Marian C. Horzinek,et al.  The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses☆ , 1997, Seminars in Virology.

[163]  Marian C. Horzinek,et al.  Hemagglutinin-esterase, a novel structural protein of torovirus , 1997, Journal of virology.

[164]  T. Gallagher,et al.  A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor , 1997, Journal of virology.

[165]  F. Fischer,et al.  The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication , 1997, Journal of virology.

[166]  W. Spaan,et al.  A subgenomic mRNA transcript of the coronavirus mouse hepatitis virus strain A59 defective interfering (DI) RNA is packaged when it contains the DI packaging signal , 1997, Journal of virology.

[167]  C. Machamer,et al.  Ceramide Accumulation Uncovers a Cycling Pathway for the cis-Golgi Network Marker, Infectious Bronchitis Virus M Protein , 1997, The Journal of cell biology.

[168]  S. Perlman,et al.  Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. , 1998, Advances in experimental medicine and biology.

[169]  D. Opstelten,et al.  Virus Maturation by Budding , 1998, Microbiology and Molecular Biology Reviews.

[170]  S. Weiss,et al.  Roles in Cell-to-Cell Fusion of Two Conserved Hydrophobic Regions in the Murine Coronavirus Spike Protein , 1998, Virology.

[171]  S. Sawicki,et al.  A new model for coronavirus transcription. , 1998, Advances in experimental medicine and biology.

[172]  H. Laude,et al.  Coronavirus Pseudoparticles Formed with Recombinant M and E Proteins Induce Alpha Interferon Synthesis by Leukocytes , 1998, Journal of Virology.

[173]  D. J. Manno,et al.  Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. , 1998, Advances in experimental medicine and biology.

[174]  M. Lai,et al.  Expression of Hemagglutinin/Esterase by a Mouse Hepatitis Virus Coronavirus Defective–Interfering RNA Alters Viral Pathogenesis , 1998, Virology.

[175]  F. Fischer,et al.  Analysis of Constructed E Gene Mutants of Mouse Hepatitis Virus Confirms a Pivotal Role for E Protein in Coronavirus Assembly , 1998, Journal of Virology.

[176]  Harry Vennema,et al.  Feline Infectious Peritonitis Viruses Arise by Mutation from Endemic Feline Enteric Coronaviruses , 1998, Virology.

[177]  H. Vennema,et al.  Coronavirus Particle Assembly: Primary Structure Requirements of the Membrane Protein , 1998, Journal of Virology.

[178]  P. Rottier,et al.  Interferon alpha inducing property of coronavirus particles and pseudoparticles. , 1998, Advances in experimental medicine and biology.

[179]  L. Enjuanes,et al.  Two Types of Virus-Related Particles Are Found during Transmissible Gastroenteritis Virus Morphogenesis , 1998, Journal of Virology.

[180]  H. Vennema,et al.  Structural Requirements for O-Glycosylation of the Mouse Hepatitis Virus Membrane Protein* , 1998, The Journal of Biological Chemistry.

[181]  S. Weiss,et al.  Amino Acid Substitutions within the Leucine Zipper Domain of the Murine Coronavirus Spike Protein Cause Defects in Oligomerization and the Ability To Induce Cell-to-Cell Fusion , 1999, Journal of Virology.

[182]  E. Hunter,et al.  A Conserved Tryptophan-Rich Motif in the Membrane-Proximal Region of the Human Immunodeficiency Virus Type 1 gp41 Ectodomain Is Important for Env-Mediated Fusion and Virus Infectivity , 1999, Journal of Virology.

[183]  A. Maeda,et al.  Release of Coronavirus E Protein in Membrane Vesicles from Virus-Infected Cells and E Protein-Expressing Cells , 1999, Virology.

[184]  H. Vennema,et al.  Mapping of the Coronavirus Membrane Protein Domains Involved in Interaction with the Spike Protein , 1999, Journal of Virology.

[185]  P. Masters Reverse Genetics of The Largest RNA Viruses , 1999, Advances in Virus Research.

[186]  Harry Vennema,et al.  Genetic drift and genetic shift during feline coronavirus evolution , 1999, Veterinary Microbiology.

[187]  Xuming Zhang,et al.  The Nucleocapsid Protein of Coronavirus Mouse Hepatitis Virus Interacts with the Cellular Heterogeneous Nuclear Ribonucleoprotein A1 in Vitro and in Vivo , 1999, Virology.

[188]  J. Carrascosa,et al.  Structural Maturation of the Transmissible Gastroenteritis Coronavirus , 1999, Journal of Virology.

[189]  S. An,et al.  Induction of Apoptosis in Murine Coronavirus-Infected Cultured Cells and Demonstration of E Protein as an Apoptosis Inducer , 1999, Journal of Virology.

[190]  A. Izeta,et al.  Replication and Packaging of Transmissible Gastroenteritis Coronavirus-Derived Synthetic Minigenomes , 1999, Journal of Virology.

[191]  G. Regl,et al.  The Hemagglutinin-Esterase of Mouse Hepatitis Virus Strain S Is a Sialate-4-O-Acetylesterase , 1999, Journal of Virology.

[192]  A. Klausegger,et al.  Identification of a Coronavirus Hemagglutinin-Esterase with a Substrate Specificity Different from Those of Influenza C Virus and Bovine Coronavirus , 1999, Journal of Virology.

[193]  A. Sims,et al.  The Putative Helicase of the Coronavirus Mouse Hepatitis Virus Is Processed from the Replicase Gene Polyprotein and Localizes in Complexes That Are Active in Viral RNA Synthesis , 1999, Journal of Virology.

[194]  S. Schleich,et al.  Localization of Mouse Hepatitis Virus Nonstructural Proteins and RNA Synthesis Indicates a Role for Late Endosomes in Viral Replication , 1999, Journal of Virology.

[195]  Krishna Shankara Narayanan,et al.  Characterization of the Coronavirus M Protein and Nucleocapsid Interaction in Infected Cells , 2000, Journal of Virology.

[196]  S. Tahara,et al.  High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. , 2000, The Journal of general virology.

[197]  M. Lai,et al.  Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus , 2000, The EMBO journal.

[198]  J. Ziebuhr,et al.  Virus-encoded proteinases and proteolytic processing in the Nidovirales. , 2000, The Journal of general virology.

[199]  M. Denison,et al.  Four Proteins Processed from the Replicase Gene Polyprotein of Mouse Hepatitis Virus Colocalize in the Cell Periphery and Adjacent to Sites of Virion Assembly , 2000, Journal of Virology.

[200]  H. Vennema,et al.  Assembly of Spikes into Coronavirus Particles Is Mediated by the Carboxy-Terminal Domain of the Spike Protein , 2000, Journal of Virology.

[201]  H. Vennema,et al.  Characterization of the Coronavirus Mouse Hepatitis Virus Strain A59 Small Membrane Protein E , 2000, Journal of Virology.

[202]  A. Sims,et al.  Mouse Hepatitis Virus Replicase Proteins Associate with Two Distinct Populations of Intracellular Membranes , 2000, Journal of Virology.

[203]  F. Taguchi,et al.  Unique N-linked glycosylation of murine coronavirus MHV-2 membrane protein at the conserved O-linked glycosylation site , 2000, Virus Research.

[204]  B. Hogue,et al.  Identification of a Bovine Coronavirus Packaging Signal , 2000, Journal of Virology.

[205]  B. Hogue,et al.  Identification of Nucleocapsid Binding Sites within Coronavirus-Defective Genomes☆ , 2000, Virology.

[206]  Minglong Zhou,et al.  The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA , 2000, Virus Research.

[207]  C. Machamer,et al.  Infectious Bronchitis Virus E Protein Is Targeted to the Golgi Complex and Directs Release of Virus-Like Particles , 2000, Journal of Virology.

[208]  M. Raamsman,et al.  Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier , 2000, Journal of Virology.

[209]  Kevin W. Chang,et al.  Coronavirus-Induced Membrane Fusion Requires the Cysteine-Rich Domain in the Spike Protein , 2000, Virology.

[210]  Seamus J. Martin,et al.  The Viral Nucleocapsid Protein of Transmissible Gastroenteritis Coronavirus (TGEV) Is Cleaved by Caspase-6 and -7 during TGEV-Induced Apoptosis , 2000, Journal of Virology.

[211]  H. Vennema,et al.  Assembly of the Coronavirus Envelope: Homotypic Interactions between the M Proteins , 2000, Journal of Virology.

[212]  T. Gallagher,et al.  Variations in Disparate Regions of the Murine Coronavirus Spike Protein Impact the Initiation of Membrane Fusion , 2001, Journal of Virology.

[213]  G. Brooks,et al.  Localization to the Nucleolus Is a Common Feature of Coronavirus Nucleoproteins, and the Protein May Disrupt Host Cell Division , 2001, Journal of Virology.

[214]  K. Holmes Enteric infections with coronaviruses and toroviruses. , 2001, Novartis Foundation symposium.

[215]  R. Woods Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene. , 2001, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[216]  S. Evans,et al.  cis-Acting Sequences Required for Coronavirus Infectious Bronchitis Virus Defective-RNA Replication and Packaging , 2001, Journal of Virology.

[217]  J. M. González,et al.  Coronavirus derived expression systems. Progress and problems. , 2001, Advances in experimental medicine and biology.

[218]  D. Liu,et al.  The Missing Link in Coronavirus Assembly , 2001, The Journal of Biological Chemistry.

[219]  M. Buchmeier,et al.  Coronavirus Spike Proteins in Viral Entry and Pathogenesis , 2001, Virology.

[220]  P. Masters,et al.  O-Glycosylation of the mouse hepatitis coronavirus membrane protein , 2001, Virus Research.

[221]  S. Kania,et al.  Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis , 2001, Veterinary Microbiology.

[222]  L. Enjuanes,et al.  The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability , 2001, Journal of Virology.

[223]  A. Maeda,et al.  Membrane Topology of Coronavirus E Protein , 2001, Virology.

[224]  D. X. Liu,et al.  The Missing Link in Coronavirus Assembly RETENTION OF THE AVIAN CORONAVIRUS INFECTIOUS BRONCHITIS VIRUS ENVELOPE PROTEIN IN THE PRE-GOLGI COMPARTMENTS AND PHYSICAL INTERACTION BETWEEN THE ENVELOPE AND MEMBRANE PROTEINS* , 2001 .

[225]  C. Sánchez,et al.  Expression of transcriptional units using transmissible gastroenteritis coronavirus derived minigenomes and full-length cDNA clones. , 2001, Advances in experimental medicine and biology.

[226]  M. Denison,et al.  Mouse Hepatitis Virus Replicase Protein Complexes Are Translocated to Sites of M Protein Accumulation in the ERGIC at Late Times of Infection , 2001, Virology.

[227]  G. Brooks,et al.  The Coronavirus Infectious Bronchitis Virus Nucleoprotein Localizes to the Nucleolus , 2001, Journal of Virology.

[228]  L. Enjuanes,et al.  Organization of Two Transmissible Gastroenteritis Coronavirus Membrane Protein Topologies within the Virion and Core , 2001, Journal of Virology.

[229]  S. Weiss,et al.  Receptor specificity and receptor-induced conformational changes in mouse hepatitis virus spike glycoprotein. , 2001, Advances in experimental medicine and biology.

[230]  J. Gombold,et al.  Effects of amino acid insertions in the cysteine-rich domain of the MHV-A59 spike protein on cell fusion. , 2001, Advances in experimental medicine and biology.

[231]  Krishna Shankara Narayanan,et al.  Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging , 2001, Journal of Virology.

[232]  F. Taguchi,et al.  Receptor-Induced Conformational Changes of Murine Coronavirus Spike Protein , 2002, Journal of Virology.

[233]  P. Masters,et al.  Genetic Evidence for a Structural Interaction between the Carboxy Termini of the Membrane and Nucleocapsid Proteins of Mouse Hepatitis Virus , 2002, Journal of Virology.

[234]  M. Lai,et al.  Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA. , 2002, Virology.

[235]  T. Gallagher,et al.  Quaternary Structure of Coronavirus Spikes in Complex with Carcinoembryonic Antigen-related Cell Adhesion Molecule Cellular Receptors* , 2002, The Journal of Biological Chemistry.

[236]  Javier Ortego,et al.  Generation of a Replication-Competent, Propagation-Deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome , 2002, Journal of Virology.

[237]  W. Wurzer,et al.  The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae. , 2002, The Journal of general virology.

[238]  Xuming Zhang,et al.  The Spike but Not the Hemagglutinin/Esterase Protein of Bovine Coronavirus Is Necessary and Sufficient for Viral Infection , 2002, Virology.

[239]  R. Baric,et al.  Heterologous Gene Expression from Transmissible Gastroenteritis Virus Replicon Particles , 2002, Journal of Virology.

[240]  F. Taguchi,et al.  Soluble Receptor Potentiates Receptor-Independent Infection by Murine Coronavirus , 2002, Journal of Virology.

[241]  P. Rottier,et al.  The Group-Specific Murine Coronavirus Genes Are Not Essential, but Their Deletion, by Reverse Genetics, Is Attenuating in the Natural Host , 2002, Virology.

[242]  C. Machamer,et al.  The Cytoplasmic Tail of Infectious Bronchitis Virus E Protein Directs Golgi Targeting , 2002, Journal of Virology.

[243]  K. Bienz,et al.  RNA Replication of Mouse Hepatitis Virus Takes Place at Double-Membrane Vesicles , 2002, Journal of Virology.

[244]  G. Brooks,et al.  Interaction of the Coronavirus Nucleoprotein with Nucleolar Antigens and the Host Cell , 2002, Journal of Virology.

[245]  S. Weiss,et al.  The N-Terminal Domain of the Murine Coronavirus Spike Glycoprotein Determines the CEACAM1 Receptor Specificity of the Virus Strain , 2003, Journal of Virology.

[246]  Lili Kuo,et al.  The Small Envelope Protein E Is Not Essential for Murine Coronavirus Replication , 2003, Journal of Virology.

[247]  S. Weiss,et al.  Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37°C either by Soluble Murine CEACAM1 Receptors or by pH 8 , 2003, Journal of Virology.

[248]  John L. Sullivan,et al.  Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.

[249]  P. Talbot,et al.  Coronavirus Hcov-229e of the Spike Glycoprotein of Human Identification of a Receptor-binding Domain , 2002 .

[250]  I. Sola,et al.  Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence , 2003, Virology.

[251]  Krishna Shankara Narayanan,et al.  Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal , 2003, Journal of Virology.

[252]  S. Shen,et al.  Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication , 2003, Virology.

[253]  P. Rottier,et al.  Switching Species Tropism: an Effective Way To Manipulate the Feline Coronavirus Genome , 2003, Journal of Virology.

[254]  Luis Carrasco,et al.  Viroporins , 2003, FEBS letters.

[255]  B. Bosch,et al.  The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex , 2003, Journal of Virology.

[256]  A. Izeta,et al.  Transmissible Gastroenteritis Coronavirus Packaging Signal Is Located at the 5′ End of the Virus Genome , 2003, Journal of Virology.

[257]  Krishna Shankara Narayanan,et al.  Characterization of N protein self-association in coronavirus ribonucleoprotein complexes , 2003, Virus Research.

[258]  P. Rottier,et al.  The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain , 2003, Virology.

[259]  C. Machamer,et al.  The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction , 2003, Virology.

[260]  P. Talbot,et al.  Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C. , 2003, Journal of virology.

[261]  P. Disterer,et al.  Multigene RNA Vector Based on Coronavirus Transcription , 2003, Journal of Virology.

[262]  N. Bastien,et al.  Analysis of multimerization of the SARS coronavirus nucleocapsid protein , 2004, Biochemical and Biophysical Research Communications.

[263]  K. Nakagaki,et al.  N-Terminal Domain of the Murine Coronavirus Receptor CEACAM1 Is Responsible for Fusogenic Activation and Conformational Changes of the Spike Protein , 2004, Journal of Virology.

[264]  G. Gao,et al.  Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors , 2004, Biochemical and Biophysical Research Communications.

[265]  L. Lai,et al.  Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein , 2004, Biochemical and Biophysical Research Communications.

[266]  R. Hodges,et al.  Structural Characterization of the SARS-Coronavirus Spike S Fusion Protein Core , 2004, Journal of Biological Chemistry.

[267]  G. Gao,et al.  Structural Basis for Coronavirus-mediated Membrane Fusion , 2004, Journal of Biological Chemistry.

[268]  W. Thomas,et al.  Amino Acids 270 to 510 of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Are Required for Interaction with Receptor , 2004, Journal of Virology.

[269]  A. Carfi,et al.  Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[270]  N. Mizushima,et al.  Coronavirus Replication Complex Formation Utilizes Components of Cellular Autophagy* , 2004, Journal of Biological Chemistry.

[271]  B. Moss,et al.  Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[272]  A. Debnath,et al.  Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors , 2004, The Lancet.

[273]  P. Rottier,et al.  Live, Attenuated Coronavirus Vaccines through the Directed Deletion of Group-Specific Genes Provide Protection against Feline Infectious Peritonitis , 2004, Journal of Virology.

[274]  V. Chow,et al.  The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain , 2004, Biochemical and Biophysical Research Communications.

[275]  J. A. Comer,et al.  Ultrastructural Characterization of SARS Coronavirus , 2004, Emerging infectious diseases.

[276]  Wenhui Li,et al.  A 193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2* , 2004, Journal of Biological Chemistry.

[277]  C. Machamer,et al.  Intracellular Targeting Signals Contribute to Localization of Coronavirus Spike Proteins near the Virus Assembly Site , 2004, Journal of Virology.

[278]  G. Simmons,et al.  Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[279]  S. Xie,et al.  Probing the Structure of the Sars Coronavirus Using Scanning Electron Microscopy , 2003, Antiviral therapy.

[280]  Wenhui Li,et al.  Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[281]  J. Lepault,et al.  Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[282]  Ping Wan,et al.  Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus , 2004, Proteomics.

[283]  A. Gunasekera,et al.  Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. , 2004, Biochemistry.

[284]  B. Bosch,et al.  Coronavirus Spike Glycoprotein, Extended at the Carboxy Terminus with Green Fluorescent Protein, Is Assembly Competent , 2004, Journal of Virology.

[285]  B. Bosch,et al.  Cleavage Inhibition of the Murine Coronavirus Spike Protein by a Furin-Like Enzyme Affects Cell-Cell but Not Virus-Cell Fusion , 2004, Journal of Virology.

[286]  G. Gao,et al.  crystal structure of MHV spike protein fusion core , 2004 .

[287]  B. Afzelius,et al.  Ultrastructure of human nasal epithelium during an episode of coronavirus infection , 2004, Virchows Archiv.

[288]  E. Caul,et al.  Replication of an enteric bovine coronavirus in intestinal organ cultures , 2005, Archives of Virology.

[289]  Marian C. Horzinek,et al.  Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells , 2005, Archives of Virology.

[290]  E. Caul,et al.  Further studies on human enteric coronaviruses , 2005, Archives of Virology.

[291]  R. Ishikawa,et al.  Structural polypeptides of the murine coronavirus DVIM , 2005, Archives of Virology.

[292]  P. Masters Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus , 1992, Archives of Virology.

[293]  D. Alexander,et al.  Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells , 2005, Archives of Virology.

[294]  K. Sugiyama,et al.  Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice , 2005, Archives of Virology.

[295]  P. Masters,et al.  The Molecular Biology of Coronaviruses , 2006, Advances in Virus Research.