Incrementally Computing Ordered Answers of Acyclic Conjunctive Queries
暂无分享,去创建一个
[1] Mihalis Yannakakis,et al. On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..
[2] E. Lawler. A PROCEDURE FOR COMPUTING THE K BEST SOLUTIONS TO DISCRETE OPTIMIZATION PROBLEMS AND ITS APPLICATION TO THE SHORTEST PATH PROBLEM , 1972 .
[3] Vagelis Hristidis,et al. PREFER: a system for the efficient execution of multi-parametric ranked queries , 2001, SIGMOD '01.
[4] Ronald Fagin,et al. Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..
[5] Philip A. Bernstein,et al. Power of Natural Semijoins , 1981, SIAM J. Comput..
[6] Catriel Beeri,et al. On the Desirability of Acyclic Database Schemes , 1983, JACM.
[7] Moni Naor,et al. Optimal aggregation algorithms for middleware , 2001, PODS.
[8] Michael J. Carey,et al. Reducing the Braking Distance of an SQL Query Engine , 1998, VLDB.
[9] Ashok K. Chandra,et al. Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.
[10] John R. Smith,et al. Supporting Incremental Join Queries on Ranked Inputs , 2001, VLDB.
[11] Mihalis Yannakakis,et al. Algorithms for Acyclic Database Schemes , 1981, VLDB.
[12] Michael J. Carey,et al. On saying “Enough already!” in SQL , 1997, SIGMOD '97.
[13] Wolfgang Lehner,et al. Optimizing Multiple Top-K Queries over Joins , 2005, SSDBM.
[14] Yehoshua Sagiv,et al. An incremental algorithm for computing ranked full disjunctions , 2005, PODS '05.