Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review

Solar thermal systems are advantageous since it is easier to store heat than electricity on a large scale. As such, concentrated solar power is receiving considerable interest among researchers, developers and governments. Several concentrated solar power technologies have been developed including the solar tower, the parabolic trough technology, solar dish and linear Fresnel systems. Among them, the parabolic trough solar collector is a proven technology used dominantly for both industrial process heat and power generation. This technology has matured over the years, and its advancement has become the topic of numerous research studies which were the counter driving force of the field. Particularly in recent years, a significant amount of theoretical and numerical studies have been conducted to assess and improve the performance of parabolic trough solar collectors. This review methodologically holds colossal knowledge of current and past studies to assess the optical and thermal performances of parabolic trough solar collectors, modeling approaches and the potential improvements proposed on behalf of the parabolic trough solar collector design. The optical modeling approaches are identified to be analytical and ray-tracing. The review of thermal modeling approaches presents the steady and transient heat transfer analyses of single and two-phase (with direct steam generation) flows. Also, the computational fluid dynamics models used to analyze the physics of parabolic trough solar collectors with a better insight are reviewed and presented. Finally, the studies conducted on the performance improvement of parabolic trough solar collectors are separately examined and presented, these include novel designs, passive heat transfer enhancement, and nanoparticle laden flows.

[1]  Assensi Oliva,et al.  Numerical simulation of wind flow around a parabolic trough solar collector , 2013 .

[2]  Adel A. Ghoneim,et al.  Parabolic Trough Collector Performance in a Hot Climate , 2016 .

[3]  S. Ghasemi,et al.  NUMERICAL ANALYSIS OF PERFORMANCE OF SOLAR PARABOLIC TROUGH COLLECTOR WITH CU-WATER NANOFLUID , 2014 .

[4]  Hadrien Benoit,et al.  Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients , 2016 .

[5]  R. T. Raj,et al.  Experimental and numerical analysis using CFD technique of the performance of the absorber tube of a solar parabolic trough collector with and without insertion , 2013, 2013 International Conference on Energy Efficient Technologies for Sustainability.

[7]  O. A. Barra,et al.  The parabolic trough plants using black body receivers: Experimental and theoretical analyses☆ , 1982 .

[8]  Talal Kassem,et al.  Numerical study of the natural convection process in the parabolic-cylindrical solar collector , 2007 .

[9]  Aldo Steinfeld,et al.  An air-based cavity-receiver for solar trough concentrators , 2010 .

[10]  Wang Fuqiang,et al.  Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics , 2016 .

[11]  Sourav Khanna,et al.  Explicit Analytical Expression for Solar Flux Distribution on an Undeflected Absorber Tube of Parabolic Trough Concentrator Considering Sun-Shape and Optical Errors , 2016 .

[12]  Q. Falcoz,et al.  Coupled simulation method by using MCRT and FVM techniques for performance analysis of a parabolic trough solar collector , 2017 .

[13]  Josua P. Meyer,et al.  Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios , 2017 .

[14]  Iván G. Martínez,et al.  Experimental and theoretical analysis of annular two-phase flow regimen in direct steam generation for a low-power system , 2007 .

[15]  Fritz Zaversky,et al.  Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid , 2013 .

[16]  Markus Eck,et al.  Direct Steam Generation in Parabolic Troughs: First Results of the DISS Project , 2001 .

[17]  M. Oblak,et al.  The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics , 2007 .

[18]  Oriol Lehmkuhl,et al.  On the CFD&HT of the Flow around a Parabolic Trough Solar Collector under Real Working Conditions☆ , 2014 .

[19]  Suneet Singh,et al.  Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator , 2013 .

[20]  K. Stephan Heat Transfer in Condensation and Boiling , 1992 .

[21]  Markus Eck,et al.  The DISS Project: Direct Steam Generation in Parabolic Trough Systems. Operation and Maintenance Experience and Update on Project Status , 2001 .

[22]  M. Behnia,et al.  Modelling of Parabolic Trough Direct Steam Generation Solar Collectors , 1998, Renewable Energy.

[23]  Yang Yao,et al.  A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors , 2017 .

[24]  Nurdil Eskin,et al.  Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results , 1999 .

[25]  C. Ghenai,et al.  Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation , 2018 .

[26]  J. Meyer,et al.  Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts , 2014 .

[27]  P. K. Nagarajan,et al.  Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids , 2018 .

[28]  Jun Wang,et al.  An optimized model and test of the China’s first high temperature parabolic trough solar receiver , 2010 .

[29]  E. Bellos,et al.  Multi-criteria evaluation of parabolic trough collector with internally finned absorbers , 2017 .

[30]  A. Mwesigye,et al.  Thermal and Thermodynamic Performance of a Parabolic Trough Receiver with Syltherm800-Al2O3 Nanofluid as the Heat Transfer Fluid , 2015 .

[31]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[32]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[33]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[34]  E. Bellos,et al.  Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids , 2018 .

[35]  Mahmood Yaghoubi,et al.  Analysis of wind flow around a parabolic collector (2) heat transfer from receiver tube , 2007 .

[36]  A. Ranjbar,et al.  Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants , 2017 .

[37]  S. Nanda,et al.  Heat loss factor for linear solar concentrators , 1982 .

[38]  S. D. Probert,et al.  Optics of parabolic-trough, solar-energy collectors, possessing small concentration ratios , 1987 .

[39]  Weidong Huang,et al.  Coupling 2D thermal and 3D optical model for performance prediction of a parabolic trough solar collector , 2016 .

[40]  E. Bellos,et al.  Thermal enhancement of parabolic trough collector with internally finned absorbers , 2017 .

[41]  T. Ming,et al.  Heat transfer network for a parabolic trough collector as a heat collecting element using nanofluid , 2018, Renewable Energy.

[42]  Iraj Mirzaee,et al.  Numerical Simulation Coupled With MCRT Method to Study the Effect of Plug Diameter and Its Position on Outlet Temperature and the Efficiency of LS-2 Parabolic Trough Collector , 2013 .

[43]  Huan Zhang,et al.  Comparison of different heat transfer models for parabolic trough solar collectors , 2015 .

[44]  T. Bello‐Ochende,et al.  Second law analysis and optimization of a parabolic trough receiver tube for direct steam generation , 2015 .

[45]  Abdallah Khellaf,et al.  A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES) , 2015 .

[46]  E. Camacho,et al.  Control concepts for direct steam generation in parabolic troughs , 2005 .

[47]  Vittorio Ferraro,et al.  Parabolic Trough System Operating with Nanofluids: Comparison with the Conventional Working Fluids and Influence on the System Performance☆ , 2016 .

[48]  David F. Fletcher,et al.  Wind Engineering Analysis of Parabolic Trough Collectors to Optimise Wind Loads and Heat Loss , 2015 .

[49]  S. C. Mullick,et al.  An improved technique for computing the heat loss factor of a tubular absorber , 1989 .

[50]  S. Euh,et al.  Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating , 2010 .

[51]  Mohamed H. Ahmed,et al.  Two Dimension Numerical Modeling of Receiver Tube Performance for Concentrated Solar Power Plant , 2014 .

[52]  Xungang Diao,et al.  A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts , 2014 .

[53]  M. Söylemez,et al.  Model-Based Performance Analysis of a Concentrating Parabolic Trough Collector Array , 2014 .

[54]  Suneet Singh,et al.  Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points , 2014 .

[55]  Wang Fuqiang,et al.  Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube , 2016 .

[56]  Gianluca Coccia,et al.  Mathematical modeling of a prototype of parabolic trough solar collector , 2012 .

[57]  Eduardo Zarza,et al.  Thermal analysis of solar receiver pipes with superheated steam , 2013 .

[58]  Dimitrios M. Korres,et al.  Thermal and optical efficiency investigation of a parabolic trough collector , 2015 .

[59]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[60]  Huaizhi Han,et al.  Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting , 2017 .

[61]  Ali Akbar Ranjbar,et al.  Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study , 2016 .

[62]  Xiao Wei Zhu,et al.  Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver , 2017 .

[63]  Giampaolo Manzolini,et al.  Geometric analysis of three-dimensional effects of parabolic trough collectors , 2013 .

[64]  W. Tao,et al.  Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector with Dimples, Protrusions and Helical Fins , 2015 .

[65]  Wen-Quan Tao,et al.  Multi-scale numerical analysis of flow and heat transfer for a parabolic trough collector , 2017 .

[66]  Aldo Steinfeld,et al.  Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators , 2012 .

[68]  S. Riffat,et al.  Year-round numerical simulation of a parabolic solar collector under Lebanese conditions: Beirut case study , 2014 .

[69]  J. Muñoz,et al.  Analysis of internal helically finned tubes for parabolic trough design by CFD tools , 2011 .

[70]  A. S. Hegazy Thermal performance of a parabolic trough collector with a longitudinal externally finned absorber , 1995 .

[71]  Arun Kumar Tiwari,et al.  Progress of nanofluid application in solar collectors: A review , 2015 .

[72]  Fahad A. Al-Sulaiman,et al.  Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia , 2014 .

[73]  Aliakbar Akbarzadeh,et al.  Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid , 2015 .

[74]  Aldo Steinfeld,et al.  Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators , 2014 .

[75]  Xin Li,et al.  Dynamic test model for the transient thermal performance of parabolic trough solar collectors , 2013 .

[76]  Aldo Steinfeld,et al.  An array of coiled absorber tubes for solar trough concentrators operating with air at 600 °C and above , 2015 .

[77]  Sheldon M. Jeter,et al.  Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation , 1986 .

[78]  Wang Fuqiang,et al.  Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system , 2015 .

[79]  Chang Xu,et al.  Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams , 2013 .

[80]  Alhassan Salami Tijani,et al.  Simulation Analysis of Thermal Losses of Parabolic trough Solar Collector in Malaysia Using Computational Fluid Dynamics , 2014 .

[81]  A. D. Risi,et al.  Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid , 2017 .

[82]  Markus Eck,et al.  Dynamics and control of parabolic trough collector loops with direct steam generation , 2007 .

[83]  M. Yaghoubi,et al.  3D Thermal-structural Analysis of an Absorber Tube of a Parabolic Trough Collector and the Effect of Tube Deflection on Optical Efficiency , 2014 .

[84]  Mohamed I. Hassan,et al.  A Realistic Numerical Model of Lengthy Solar Thermal Receivers Used in Parabolic Trough CSP Plants , 2015 .

[85]  Suneet Singh,et al.  Explicit expressions for temperature distribution and deflection in absorber tube of solar parabolic trough concentrator , 2015 .

[86]  Xu Ji,et al.  Research on the compensation of the end loss effect for parabolic trough solar collectors , 2014 .

[87]  Weidong Huang,et al.  Performance simulation of a parabolic trough solar collector , 2012 .

[88]  İ. Yılmaz,et al.  Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid , 2018 .

[89]  Josua P. Meyer,et al.  Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts , 2015 .

[90]  M. M. Rahman,et al.  Heat transfer analysis of parabolic trough solar receiver , 2011 .

[91]  Dnyaneshwar R. Waghole,et al.  Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofliud in Absorber/Receiver of Parabolic Trough Collector with Twisted Tape Inserts , 2014 .

[92]  Alibakhsh Kasaeian,et al.  Performance evaluation and nanofluid using capability study of a solar parabolic trough collector , 2015 .

[93]  Yang Xu,et al.  Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model , 2014 .

[94]  Gilles Flamant,et al.  A thermal model to predict the dynamic performances of parabolic trough lines , 2017 .

[95]  A. C. Ratzel,et al.  Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries , 1979 .

[96]  R. Pitz-Paal,et al.  Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET , 2014 .

[97]  Wei Zhang,et al.  Modeling of fluid flow and heat transfer in a trough solar collector , 2013 .

[98]  Ya-Ling He,et al.  Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method , 2012 .

[99]  V. Belessiotis,et al.  Daily performance of parabolic trough solar collectors , 2017 .

[100]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[101]  M. Eickhoff,et al.  Applied research concerning the direct steam generation in parabolic troughs , 2003 .

[102]  Emilio Baglietto,et al.  Modeling the dynamics of the multiphase fluid in the parabolic-trough solar steam generating systems , 2014 .

[103]  Aránzazu Fernández-García,et al.  Modeling and co-simulation of a parabolic trough solar plant for industrial process heat , 2013 .

[104]  A. Rabl,et al.  Optimization of parabolic trough solar collectors , 1982 .

[105]  H. Price,et al.  Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology , 1999 .

[106]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[107]  A. Ranjbar,et al.  Numerical Study On Thermal Performance Of Solar Parabolic Trough Collector , 2013 .

[108]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[109]  P. Bournot,et al.  Numerical Study and Optimization of Parabolic Trough Solar Collector Receiver Tube , 2015 .

[110]  Wen-Quan Tao,et al.  Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes , 2017 .

[111]  Yongping Yang,et al.  Dynamic modeling and simulation of a solar direct steam‐generating system , 2010 .

[112]  Patrick A. Narbel,et al.  Solar energy: Markets, economics and policies , 2012 .

[113]  J. J. Serrano-Aguilera,et al.  Thermal 3D model for Direct Solar Steam Generation under superheated conditions , 2014 .

[114]  Jamel Orfi,et al.  Heat losses from parabolic trough solar collectors , 2014 .

[115]  Ya-Ling He,et al.  Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube , 2010 .

[116]  Wei Liu,et al.  Enhancing heat transfer in the core flow by using porous medium insert in a tube , 2010 .

[117]  R. M. Manglik,et al.  Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows , 1993 .

[118]  K. Ravi Kumar,et al.  Numerical Investigation of Energy-Efficient Receiver for Solar Parabolic Trough Concentrator , 2008 .

[119]  Guangdong Zhu,et al.  A New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation , 2012 .

[120]  D. Kearney,et al.  Test results: SEGS LS-2 solar collector , 1994 .

[121]  Shi-jun You,et al.  Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector , 2018 .

[122]  Gianpiero Colangelo,et al.  Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications , 2012 .

[123]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[124]  Ramchandra G. Patil,et al.  Optimization of non-evacuated receiver of solar collector having non-uniform temperature distribution for minimum heat loss , 2014 .

[125]  Saffa Riffat,et al.  Pressure loss characteristics of orifice and perforated plates , 1997 .

[126]  T. Lundgren,et al.  Slow flow through stationary random beds and suspensions of spheres , 1972, Journal of Fluid Mechanics.

[127]  Assensi Oliva,et al.  Wind speed effect on the flow field and heat transfer around a parabolic trough solar collector , 2014 .

[128]  Selahaddin Orhan Akansu,et al.  Heat transfers and pressure drops for porous-ring turbulators in a circular pipe , 2006 .

[129]  A. Lentz,et al.  DSG Under Two-Phase and Stratified Flow in a Steel Receiver of a Parabolic Trough Collector , 2002 .

[130]  Modeling and Characteristic Analysis of a Solar Parabolic Trough System: Thermal Oil as the Heat Transfer Fluid , 2013 .

[131]  Rong Xu,et al.  Closed-form modeling of direct steam generation in a parabolic trough solar receiver , 2015 .

[132]  Roberto Grena,et al.  Optical simulation of a parabolic solar trough collector , 2010 .

[133]  A. Graham On the viscosity of suspensions of solid spheres , 1981 .

[134]  Peng Zhang,et al.  Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector , 2014 .

[135]  Gianluca Coccia,et al.  Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield , 2016 .

[136]  U. C. Arunachala,et al.  Solar parabolic trough collectors: A review on heat transfer augmentation techniques , 2017 .

[137]  Yang Xu,et al.  Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD , 2016 .

[138]  Aldo Steinfeld,et al.  An air-based corrugated cavity-receiver for solar parabolic trough concentrators , 2015 .

[139]  J. Thome,et al.  Investigation of Flow Boiling in Horizontal Tubes: Part I, A New Diabatic Two-Phase Flow Pattern Map , 2005 .

[140]  N. Nallusamy,et al.  Experimental and numerical investigation on solar parabolic trough collector integrated with thermal energy storage unit , 2016 .

[141]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[142]  Nasrudin Abd Rahim,et al.  Modelling and analysis of the effect of different parameters on a parabolic-trough concentrating solar system , 2015 .

[143]  PERFORMANCE EVALUATION OF A NANOFLUID BASED PARABOLIC SOLAR COLLECTOR – AN EXPERIMENTAL STUDY , 2014 .

[144]  Jean-Jacques Bezian,et al.  Control systems for direct steam generation in linear concentrating solar power plants – A review , 2016 .

[145]  E. Bellos,et al.  Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids , 2017 .

[146]  I. Pop,et al.  A review of the applications of nanofluids in solar energy , 2013 .

[147]  M. Yaghoubi,et al.  3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator with Louvered Twisted-tape Inserts , 2014 .

[148]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[149]  Michael W. Edenburn Performance analysis of a cylindrical parabolic focusing collector and comparison with experimental results , 1976 .

[150]  Anupam Dewan,et al.  Review of passive heat transfer augmentation techniques , 2004 .

[151]  F. Lippke,et al.  Direct steam generation in parabolic trough solar power plants : Numerical investigation of the transients and the control of a once-through system , 1996 .

[152]  E. Papanicolaou,et al.  Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model , 2016 .

[153]  Peng Zhang,et al.  Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator , 2015 .

[154]  R. Pitz-Paal,et al.  Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement , 2009 .

[155]  Ricardo Vinuesa,et al.  Simulations and experiments of heat loss from a parabolic trough absorber tube over a range of pressures and gas compositions in the vacuum chamber , 2016 .

[156]  Ricardo Beltrán,et al.  Numerical simulation and design of a parabolic trough solar collector used as a direct generator in a solar-GAX cooling cycle? , 2011 .

[157]  O. García-Valladares,et al.  Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers , 2009 .

[158]  Ahmed Amine Hachicha,et al.  Heat transfer analysis and numerical simulation of a parabolic trough solar collector , 2013 .

[159]  Yangyang He,et al.  Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers , 2012 .

[160]  İ. Yılmaz OPTIMIZATION OF AN INTEGRAL FLAT PLATE COLLECTOR-STORAGE SYSTEM FOR DOMESTIC SOLAR WATER HEATING IN ADANA , 2018 .

[161]  Qi Liang,et al.  Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm , 2015 .

[162]  Amin M. Elsafi On thermo-hydraulic modeling of direct steam generation , 2015 .

[163]  Thomas H. Kuehn,et al.  Performance analysis of a parabolic trough solar collector with a porous absorber receiver , 1989 .

[164]  S. Kalogirou A detailed thermal model of a parabolic trough collector receiver , 2012 .

[165]  Chang Xu,et al.  Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants , 2017 .

[166]  Chang Xu,et al.  Conjugate heat transfer modeling and asymmetric characteristic analysis of the heat collecting element for a parabolic trough collector , 2016 .

[167]  Abdul Kajavali,et al.  Investigation of Heat Transfer Enhancement in a Parabolic Trough Collector with a Modified Absorber , 2015 .

[168]  Loreto Valenzuela,et al.  A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS , 2016 .

[169]  Xiaoxi Yang,et al.  Nonuniform heat transfer model and performance of parabolic trough solar receiver , 2013 .

[170]  M. S. Khalil,et al.  Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions , 2018 .

[171]  C Saltiel,et al.  Optical analysis of solar energy tubular absorbers. , 1982, Applied optics.

[172]  Lingzhi Zhu,et al.  Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector , 2016 .

[173]  Jiangfeng Guo,et al.  Multi-parameter optimization design of parabolic trough solar receiver , 2016 .

[174]  J. Ordonez,et al.  Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization , 2018 .

[175]  Hongguang Jin,et al.  A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid , 2014 .

[176]  Halil M. Guven,et al.  Effect of Optical Errors on Flux Distribution Around the Absorber Tube of a Parabolic Trough Concentrator , 1994 .

[177]  María José Montes,et al.  A new approach for the prediction of thermal efficiency in solar receivers , 2016 .

[178]  Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors , 2016 .

[179]  R. Forristall,et al.  Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver , 2003 .

[180]  Gianpiero Colangelo,et al.  Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems , 2016 .

[181]  Mahmood Yaghoubi,et al.  Analysis of Heat Losses of Absorber Tubes of Parabolic through Collector of Shiraz (Iran) Solar Power Plant , 2013 .

[182]  M. M. El-Kassaby,et al.  PREDICTION OF CONCENTRATION DISTRIBUTION IN PARABOLIC TROUGH SOLAR COLLECTORS , 1994 .

[183]  H. Tyagi,et al.  Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector , 2009 .

[184]  Aldo Steinfeld,et al.  Analysis of Conduction Heat Loss From a Parabolic Trough Solar Receiver with Active Vacuum by Direct Simulation Monte Carlo , 2012 .

[185]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[186]  H. Benmoussa,et al.  Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology , 2018 .

[187]  Aldo Steinfeld,et al.  Numerical Analysis of Heat Loss From a Parabolic Trough Absorber Tube With Active Vacuum System , 2011 .

[188]  Chinaruk Thianpong,et al.  Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes , 2010 .

[189]  Yassine Demagh,et al.  A design method of an S-curved parabolic trough collector absorber with a three-dimensional heat flux density distribution , 2015 .

[190]  David P. DeWitt,et al.  Thermal Radiative Properties , 1972 .

[191]  Richard Bannerot,et al.  Derivation of Universal Error Parameters for Comprehensive Optical Analysis of Parabolic Troughs , 1986 .

[192]  Murat Ozturk,et al.  Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors , 2007 .

[193]  Ya-Ling He,et al.  A new modelling method and unified code with MCRT for concentrating solar collectors and its applications , 2013 .

[194]  Siamak Kazemzadeh Hannani,et al.  Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study , 2017 .

[195]  Yong Shuai,et al.  Ray-Thermal-Structural Coupled Analysis of Parabolic Trough Solar Collector System , 2010 .

[196]  A. Acrivos,et al.  On the viscosity of a concentrated suspension of solid spheres , 1967 .

[197]  Ali Akbar Ranjbar,et al.  Three-dimensional Numerical Analysis Of Heat Transfer Characteristics Of Solar Parabolic Collector With Two Segmental Rings , 2013 .

[198]  S. Saedodin,et al.  Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media , 2017 .

[199]  Robert Pitz-Paal,et al.  Transient models and characteristics of once-through line focus Systems , 2015 .

[200]  Larbi Loukarfi,et al.  Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils , 2013 .

[201]  A. Allouhi,et al.  Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications , 2018 .

[202]  Zhigang Liu,et al.  Performance investigation of parabolic trough solar receiver , 2016 .

[203]  Wattanapong Rakwichian,et al.  Solar Parabolic Trough Simulation and Application for a Hybrid Power Plant in Thailand , 2006 .

[204]  M. Yaghoubi,et al.  Analysis of wind flow around a parabolic collector (1) fluid flow , 2007 .

[205]  Josua P. Meyer,et al.  Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts , 2016 .

[206]  K. R. Kumar,et al.  Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector , 2015 .

[207]  M Ghodbane,et al.  A NUMERICAL ANALYSIS OF THE ENERGY BEHAVIOR OF A PARABOLIC TROUGH CONCENTRATOR , 2018 .

[208]  David F. Fletcher,et al.  Wind engineering analysis of parabolic trough solar collectors: The effects of varying the trough depth , 2014 .

[209]  Jun Wang,et al.  A systematic study of the residual gas effect on vacuum solar receiver , 2011 .

[210]  D. Laforgia,et al.  Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids , 2013 .

[211]  Kun Wang,et al.  A detailed parameter study on the comprehensive characteristics and performance of a parabolic trough solar collector system , 2014 .

[212]  G. V. Satyanarayana,et al.  Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator , 2008 .

[213]  Ya-Ling He,et al.  A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector , 2011 .

[214]  Emilio Baglietto,et al.  Modeling direct steam generation in solar collectors with multiphase CFD , 2014 .

[215]  Richard Bannerot,et al.  Determination of error tolerances for the optical design of parabolic troughs for developing countries , 1986 .

[216]  Martin D. España,et al.  Approximate steady-state modeling of solar trough collectors , 1987 .

[217]  W. Tao,et al.  Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube , 2016 .

[218]  M. Söylemez,et al.  Performance Testing of A Parabolic Trough Collector Array , 2015 .

[219]  K. Nigam,et al.  Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids , 2018, Renewable Energy.

[220]  Farrokh Mistree,et al.  DESIGN SYNTHESIS OF PARABOLIC TROUGH SOLAR COLLECTORS FOR DEVELOPING COUNTRIES , 1984 .

[221]  Pongjet Promvonge,et al.  Heat transfer characteristics in a tube fitted with helical screw-tape with/without core-rod inserts , 2007 .

[222]  Zhifeng Wang,et al.  Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver , 2014 .

[223]  Josua P. Meyer,et al.  Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios , 2014 .

[224]  K. R. Kumar,et al.  Thermal analysis of solar parabolic trough with porous disc receiver , 2009 .

[225]  H. Hong,et al.  Numerical study of parabolic-trough direct steam generation loop in recirculation mode: Characteristics, performance and general operation strategy , 2015 .

[226]  Eliene Oliveira Lucas,et al.  Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Collector: An Analysis , 2014 .

[227]  Felix Sharipov,et al.  Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio , 2006 .

[228]  A. Rabl,et al.  Incidence-Angle Modifier and Average Optical Efficiency of Parabolic Trough Collectors , 1979 .

[229]  P. Bendt,et al.  Optical Analysis and Optimization of Line Focus Solar Collectors , 1979 .

[230]  A. Kasaeian,et al.  Comparative study of different nanofluids applied in a trough collector with glass-glass absorber tube , 2017 .

[231]  Josua P. Meyer,et al.  Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios , 2013 .

[232]  Ramchandra G. Patil,et al.  Numerical study of heat loss from a non-evacuated receiver of a solar collector , 2014 .

[233]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[234]  J. Meyer,et al.  Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver , 2016 .

[235]  Cristina Prieto,et al.  Direct Steam Generation in Parabolic Trough Collectors , 2014 .

[236]  G. W. Treadwell,et al.  Systematic Rotation and Receiver Location Error Effects on Parabolic Trough Annual Performance , 1981 .

[237]  Yogender Pal Chandra,et al.  Numerical optimization and convective thermal loss analysis of improved solar parabolic trough collector receiver system with one sided thermal insulation , 2017 .

[238]  Pei Gang,et al.  Dynamic Performance of Parabolic Trough Solar Collector , 2008 .

[239]  Todd Otanicar,et al.  Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector , 2012 .

[240]  Ennio Macchi,et al.  Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case , 2011 .

[241]  Ming-Jia Li,et al.  Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux , 2017 .

[242]  Ketan Diwan,et al.  Heat Transfer Enhancement in Absorber Tube of Parabolic Trough Concentrators Using Wire-Coils Inserts , 2015 .

[243]  Juan Pablo Núnez Bootello,et al.  Optical Analysis of a Two Stage XX Concentrator for Parametric Trough Primary and Tubular Absorber With Application in Solar Thermal Energy Trough Power Plants , 2016 .

[244]  R. B. Pettit,et al.  Characterization of the reflected beam profile of solar mirror materials , 1977 .

[245]  Hongguang Jin,et al.  Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions , 2015 .

[246]  Shi-jun You,et al.  Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors , 2016 .

[247]  Evangelos Bellos,et al.  Parametric investigation of nanofluids utilization in parabolic trough collectors , 2017 .

[248]  A. Kasaeian,et al.  Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector , 2017 .

[249]  P. K. Nagarajan,et al.  Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime , 2018 .

[250]  A. Das,et al.  Numerical investigation of parabolic trough receiver performance with outer vacuum shell , 2011 .

[251]  Jinliang Xu,et al.  Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid , 2016 .

[252]  Victor César Pigozzo Filho,et al.  Experimental and Numerical Analysis of Thermal Losses of a Parabolic Trough Solar Collector , 2014 .

[253]  Juan Xiao,et al.  Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector , 2010 .

[254]  Ali Akbar Ranjbar,et al.  Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector , 2017 .

[255]  Parthiv Kurup,et al.  Parabolic Trough Collector Cost Update for the System Advisor Model (SAM) , 2015 .

[256]  Wolfgang Heidemann,et al.  Steady-state and transient temperature field in the absorber tube of a direct steam generating solar collector , 1992 .

[257]  Alibakhsh Kasaeian,et al.  Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid , 2014 .

[258]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[259]  Mehmet Sait Söylemez,et al.  Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey , 2012 .

[260]  Yu Qiu,et al.  A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends , 2015 .

[261]  Iraj Mirzaee,et al.  Numerical Study on Heat Transfer Enhancement and Friction Factor of LS-2 Parabolic Solar Collector , 2014 .

[262]  Mehmet Sait Söylemez,et al.  Thermo-mathematical modeling of parabolic trough collector , 2014 .

[263]  K. A. Antonopoulos,et al.  The impact of internal longitudinal fins in parabolic trough collectors operating with gases , 2017 .

[264]  S. Jeter Analytical determination of the optical performance of practical parabolic trough collectors from design data , 1987 .

[265]  E. K. May,et al.  Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues , 1982 .

[266]  T. Kitano,et al.  An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers , 1981 .

[267]  Hany Al-Ansary,et al.  Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector , 2011 .

[268]  Marcus Thern,et al.  Dynamic Modeling of a Parabolic Trough Solar Thermal Power Plant with Thermal Storage Using Modelica , 2018 .

[269]  Weiwei Yang,et al.  Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle , 2012 .

[270]  K. A. Antonopoulos,et al.  The use of gas working fluids in parabolic trough collectors – An energetic and exergetic analysis , 2016 .

[271]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[272]  K. S. Reddy,et al.  Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator , 2012 .

[273]  W. Swinbank Long‐wave radiation from clear skies , 1963 .

[274]  Shijun You,et al.  A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors , 2017 .

[275]  Josua P. Meyer,et al.  Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid , 2016 .

[276]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[277]  Ya-Ling He,et al.  Numerical optimization of catalyst configurations in a solar parabolic trough receiver–reactor with non-uniform heat flux , 2015 .

[279]  A. Tripathy,et al.  Structural analysis of absorber tube used in parabolic trough solar collector and effect of materials on its bending: A computational study , 2018 .

[280]  Aldo Steinfeld,et al.  Experimental and Numerical Heat Transfer Analysis of an Air-Based Cavity-Receiver for Solar Trough Concentrators , 2012 .

[281]  Aron Dobos,et al.  SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems , 2013 .

[282]  Andrea Giglio,et al.  Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system , 2017 .

[284]  Moussa Zerrouki,et al.  Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region , 2014 .

[285]  A. Rabl,et al.  Long-term average performance benefits of parabolic trough improvements , 1980 .

[286]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[287]  Shi Dong Li A Simple Design Method for Thermal Performance of Parabolic Troughs Solar Field , 2013 .

[288]  K. A. Antonopoulos,et al.  Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube , 2016 .