Ranking Quality Evaluation of PageRank Variations

PageRank 알고리즘은 구글(Google)등의 검색 엔진에서 웹 페이지의 순위(rank)를 정하는 중요한 요소이다. PageRank 알고리즘의 순위 품질(ranking quality)을 향상시키기 위해 많은 변형 알고리즘들이 제안되었지만 어떤 변형 알고리즘(혹은 변형 알고리즘들간의 조합)이 가장 좋은 순위 품질을 제공하는지가 명확하지 않다. 본 논문에서는 PageRank 알고리즘의 잘 알려진 변형 알고리즘들과 그들 간의 조합들에 대해 순위 품질을 평가한다. 이를 위해, 먼저 변형 알고리즘들을 웹의 링크(link) 구조를 이용하는 링크기반 방법(Link-based approaches)과 웹의 의미 정보를 이용하는 지식기반 방법(Knowledge-based approaches)으로 분류한다. 다음으로, 이 두 가지 방법에 속하는 알고리즘들을 조합한 알고리즘들을 제안하고, 변형 알고리즘들과 그들을 조합한 알고리즘들을 구현한다. 백만 개의 웹 페이지들로 구성된 실제 데이터에 대한 실험을 통해 PageRank의 변형 알고리즘들과 그들 간의 조합들로부터 가장 좋은 순위 품질을 제공하는 알고리즘을 찾는다.