Polymer Derived Si–B–C–N Ceramics: 30 Years of Research

Long term stability of ceramics at high temperatures is one of the great challenges of the contemporary technology developments. Multi‐component ceramics such as Si–B–C–N systems gain a lot of interest for high temperature applications due to the stability of their amorphous inorganic network arising from strong covalent bonding. The polymer derived ceramics (PDC) route enables the synthesis of such materials from preceramic polymers as well as their manufacturing as specific ceramic geometries, which are difficult to obtain otherwise. This review proposes an overview of the works related to the development of Si–B–C–N ceramics through the PDC route in the last 30 years. A particular focus is made on the relation between the chemical structure of the precursors and the properties of the resulting ceramics. The main topics reviewed are related to the synthesis of tailor‐made polymeric precursors, to their processing to ceramic components, and to the characterization of the material properties and functionalities. The various strategies adopted for the development of shaped Si–B–C–N ceramics as functional materials are presented and the trend of nowadays research for future evolution of Si–B–C–N materials is discussed.

[1]  Jie Kong,et al.  Excellent Electromagnetic Wave Absorption of Iron‐Containing SiBCN Ceramics at 1158 K High‐Temperature , 2018 .

[2]  C. Shao,et al.  High-Temperature Corrosion Behavior of SiBCN Fibers for Aerospace Applications. , 2018, ACS applied materials & interfaces.

[3]  H. Kleebe,et al.  Preparation of dense SiHf(B)CN-based ceramic nanocomposites via rapid spark plasma sintering , 2017 .

[4]  Lixin Chen,et al.  Coating formed by SiBCN single source precursor via UV-photopolymerization , 2017 .

[5]  T. Rouxel,et al.  Molecular design of melt-spinnable co-polymers as Si-B-C-N fiber precursors. , 2017, Dalton transactions.

[6]  C. Shao,et al.  Curing green fibres infusible by electron beam irradiation for the preparation of SiBNC ceramic fibres , 2017 .

[7]  Zhihua Yang,et al.  Effects of boron addition on the high temperature oxidation resistance of dense sSiBCN monoliths at 1500 °C , 2017 .

[8]  Xiaolei Li,et al.  Fabrication and toughening behavior of carbon nanotube (CNT) scaffold reinforced SiBCN ceramic composites with high CNT loading , 2017 .

[9]  P. Champagne,et al.  Inside Back Cover: Molecular Chemistry and Engineering of Boron‐Modified Polyorganosilazanes as New Processable and Functional SiBCN Precursors (Chem. Eur. J. 38/2017) , 2017 .

[10]  C. Shao,et al.  A simple and efficient method for the synthesis of SiBNC ceramics with different Si/B atomic ratios , 2017 .

[11]  Jie Kong,et al.  Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[12]  Tingting Xu,et al.  Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites , 2017 .

[13]  S. Bernard,et al.  Nanocomposites through the Chemistry of Single-Source Precursors: Understanding the Role of Chemistry behind the Design of Monolith-Type Nanostructured Titanium Nitride/Silicon Nitride. , 2017, Chemistry.

[14]  Yongqiang Sun,et al.  Synthesis and characteristic of SiBCN/HfN ceramics with high temperature oxidation resistance , 2016 .

[15]  S. Bernard,et al.  Polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers , 2016 .

[16]  S. Creager,et al.  Asymmetric polysilazane-derived ceramic structures with multiscalar porosity for membrane applications , 2016 .

[17]  Jia-Jia Yuan,et al.  High-temperature oxidation behavior of polymer-derived SiHfBCN ceramic nanocomposites , 2016 .

[18]  P. Colombo,et al.  Porous polymer derived ceramics , 2016 .

[19]  Zhihua Yang,et al.  Amorphous silicoboron carbonitride monoliths resistant to flowing air up to 1800 °C , 2016 .

[20]  G. Vignoles,et al.  Polymer-Derived Silicoboron Carbonitride Foams for CO2 Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal-Organic Frameworks. , 2016, Chemistry.

[21]  L. David,et al.  Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor electrode , 2016 .

[22]  U. Wiesner,et al.  Self-Assembled Gyroidal Mesoporous Polymer-Derived High Temperature Ceramic Monoliths , 2016 .

[23]  Xinghong Zhang,et al.  Ordered Silica Nanoparticles Grown on a Three-Dimensional Carbon Fiber Architecture Substrate with Siliconborocarbonitride Ceramic as a Thermal Barrier Coating. , 2016, ACS applied materials & interfaces.

[24]  Z. Eckel,et al.  Additive manufacturing of polymer-derived ceramics , 2016, Science.

[25]  Tingting Xu,et al.  Synthesis of borosilazane as UV-curable borazine-type single source precursor for SiBCN ceramic materials , 2015 .

[26]  Jia-Jia Yuan,et al.  Preparation and hydrothermal corrosion behavior of Cf/SiCN and Cf/SiHfBCN ceramic matrix composites , 2015 .

[27]  R. Bordia,et al.  A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors , 2015, Journal of the European Ceramic Society.

[28]  N. Mano,et al.  Triple hierarchical micro–meso–macroporous carbonaceous foams bearing highly monodisperse macroporosity , 2015 .

[29]  S. Bernard,et al.  Monodisperse platinum nanoparticles supported on highly ordered mesoporous silicon nitride nanoblocks: superior catalytic activity for hydrogen generation from sodium borohydride , 2015 .

[30]  T. Chartier,et al.  Preparation of polymer-derived Si–B–C–N monoliths by spark plasma sintering technique , 2015 .

[31]  S. Bernard,et al.  Ceramic Nanocomposites from Tailor-Made Preceramic Polymers , 2015, Nanomaterials.

[32]  J. Zou,et al.  Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics. , 2015, ACS applied materials & interfaces.

[33]  Ze Feng,et al.  Preparation and anti-oxidation characteristics of ZrSiO4–SiBCN(O) amorphous coating , 2015 .

[34]  S. Bernard,et al.  In Situ Controlled Growth of Titanium Nitride in Amorphous Silicon Nitride: A General Route Toward Bulk Nitride Nanocomposites with Very High Hardness , 2014, Advanced materials.

[35]  H. Kleebe,et al.  Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs). , 2014, Inorganic chemistry.

[36]  L. An,et al.  Effect of pyrolysis temperature on the electric conductivity of polymer-derived silicoboron carbonitride , 2014 .

[37]  W. Krenkel,et al.  Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status , 2014 .

[38]  Luo Kong,et al.  Effects of multi-walled carbon nanotubes on the crystallization behavior of PDCs-SiBCN and their improved dielectric and EM absorbing properties , 2014 .

[39]  S. Bernard,et al.  Ordered mesoporous polymer-derived ceramics and their processing into hierarchically porous boron nitride and silicoboron carbonitride monoliths , 2014 .

[40]  Ze Feng,et al.  Preparation and Thermal Cycling Resistance of SiBCN(O) Coating , 2014 .

[41]  Lai-fei Cheng,et al.  Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics , 2014 .

[42]  T. Schmalz,et al.  Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres , 2013 .

[43]  Ravi Kumar,et al.  Experimental investigation on the indentation hardness of precursor derived Si–B–C–N ceramics , 2013 .

[44]  M. Bechelany,et al.  Silicon–boron–carbon–nitrogen monoliths with high, interconnected and hierarchical porosity , 2013 .

[45]  Lai-fei Cheng,et al.  Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures , 2013 .

[46]  R. Riedel,et al.  Ceramics Science and Technology , 2013 .

[47]  S. Sen,et al.  Effect of Precursor on Speciation and Nanostructure of SiBCN Polymer‐Derived Ceramics , 2013 .

[48]  C. Balan,et al.  Evaluation of the processability of boron‐containing organosilazane polymers based on shear rheology , 2013 .

[49]  J. Lehman,et al.  Very high laser-damage threshold of polymer-derived Si(B)CN-carbon nanotube composite coatings. , 2013, ACS applied materials & interfaces.

[50]  S. Bernard,et al.  Direct Synthesis of Periodic Mesoporous SilicoBoron CarboNitride Frameworks via the Nanocasting from Ordered Mesoporous Silica with Boron‐Modified Polycarbosilazane , 2013 .

[51]  G. Singh,et al.  Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode. , 2012, ACS applied materials & interfaces.

[52]  M. Jansen,et al.  Solid‐State NMR Investigations on the Amorphous Network of Precursor‐Derived Si2B2N5C4 Ceramics , 2012 .

[53]  M. Weinmann,et al.  Study of the intermediate pyrolysis steps and mechanism identification of polymer-derived SiBCN ceramics , 2012 .

[54]  H. Xia,et al.  Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic , 2012 .

[55]  Ralf Riedel,et al.  Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. , 2012, Chemical Society reviews.

[56]  T. Schmalz,et al.  Polymer derived non-oxide ceramics modified with late transition metals. , 2012, Chemical Society reviews.

[57]  M. Herrmann,et al.  Preparation and application of cellular and nanoporous carbides. , 2012, Chemical Society reviews.

[58]  A. Navrotsky,et al.  Effect of boron on the thermodynamic stability of amorphous polymer-derived Si-(B)-)C-N ceramics , 2012 .

[59]  Gurpreet Singh,et al.  Synthesis, Characterization, and High Temperature Stability of Si(B)CN‐Coated Carbon Nanotubes Using a Boron‐Modified Poly(ureamethylvinyl)Silazane Chemistry , 2012 .

[60]  M. Jansen,et al.  One-pot synthesis of DMTA-analogous SiBNC preceramic polymer , 2012 .

[61]  M. Weinmann,et al.  Chemistry, structure and processability of boron-modified polysilazanes as tailored precursors of ceramic fibers , 2012 .

[62]  S. Bernard,et al.  Micro-, Mesoporous Boron Nitride-Based Materials Templated from Zeolites , 2012 .

[63]  Lei Zhai,et al.  Structural Evolution of Polymer-Derived Amorphous SiBCN Ceramics at High Temperature , 2011 .

[64]  S. Bernard,et al.  Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry , 2011 .

[65]  M. Jansen,et al.  Curing preceramic SiBNC polymers infusible by radical polymerization , 2011 .

[66]  Ying Wan,et al.  Ordered mesoporous non-oxide materials. , 2011, Chemical Society reviews.

[67]  T. Schmalz,et al.  Analysis of polyethylene-particle filled SiCN precursor and the resulting porous ceramics with emphasis on using micro computed tomography , 2011 .

[68]  Caihong Xu,et al.  Synthesis and characterization of a new liquid polymer precursor for Si–B–C–N ceramics , 2011 .

[69]  S. Bernard,et al.  Ordered mesoporous silicoboron carbonitride ceramics from boron-modified polysilazanes: Polymer synthesis, processing and properties , 2011 .

[70]  Johan A. Martens,et al.  Simple synthesis recipes of porous materials , 2011 .

[71]  J. Bill,et al.  Kinetic effect of boron on the crystallization of Si_3N_4 in Si–B–C–N polymer-derived ceramics , 2011 .

[72]  J. Bill,et al.  Kinetic effect of boron on the thermal stability of Si-(B-)C-N polymer-derived ceramics , 2010 .

[73]  Paolo Colombo,et al.  Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics , 2010 .

[74]  A. Gurlo,et al.  Multilayer Amorphous‐Si‐B‐C‐N/γ‐Al2O3/α‐Al2O3 Membranes for Hydrogen Purification , 2010 .

[75]  J. Bill,et al.  Quantitative X‐ray Diffraction Analysis and Modeling of the Crystallization Process in Amorphous Si–B–C–N Polymer‐Derived Ceramics , 2010 .

[76]  D. Cornu,et al.  A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. , 2010, Nanoscale.

[77]  R. Riedel,et al.  Highly porous macro- and micro-cellular ceramics from a polysilazane precursor , 2009 .

[78]  J. Bill,et al.  Effect of boron on the crystallization of amorphous Si–(B–)C–N polymer-derived ceramics , 2009 .

[79]  J. D’Haen,et al.  Convenient synthesis of ordered mesoporous silica at room temperature and quasi-neutral pH , 2009 .

[80]  M. Morcrette,et al.  Hard Macrocellular Silica Si(HIPE) Foams Templating Micro/Macroporous Carbonaceous Monoliths: Applications as Lithium Ion Battery Negative Electrodes and Electrochemical Capacitors , 2009 .

[81]  M. Weinmann,et al.  Cfiber/SiCfiller/Si–B–C–Nmatrix composites with extremely high thermal stability , 2009 .

[82]  Xiaodong Li,et al.  One-pot synthesis of novel polyborosilazane to SiBNC fibres , 2009 .

[83]  M. Bechelany,et al.  Shaping potentialities of aluminum nitride polymeric precursors: Preparation of thin coatings and 1D nanostructures in liquid phase , 2009 .

[84]  Xiaodong Li,et al.  Preceramic polymer for SiBNC fiber via one‐step condensation of silane, BCl3, and silazane , 2008 .

[85]  S. Bernard,et al.  Ordered Mesoporous Silicoboron Carbonitride Materials via Preceramic Polymer Nanocasting , 2008 .

[86]  M. Weinmann,et al.  Extraordinary thermal stability of SiC particulate-reinforced polymer-derived Si–B–C–N composites , 2008 .

[87]  Zhihua Yang,et al.  Processing and characterization of SiB0.5C1.5N0.5 produced by mechanical alloying and subsequent spark plasma sintering , 2008 .

[88]  M. Weinmann,et al.  Cl2MeSi–NH–BCl2 and ClMe2Si–NH–BCl2: novel processable single source precursors of amorphous Si/C/B/N ceramics , 2008 .

[89]  K. Kojima,et al.  Local structure and defects in ultrahigh-temperature materials of borosilicon carbonitride , 2008 .

[90]  M. Weinmann,et al.  Processing and properties of C/Si-B-C-N fiber-reinforced ceramic matrix composites prepared by precursor impregnation and pyrolysis , 2008 .

[91]  M. Weinmann,et al.  Towards continuous processes for the synthesis of precursors of amorphous Si/B/N/C ceramics , 2008 .

[92]  G. Borchardt,et al.  Atomic diffusion of boron and other constituents in amorphous Si–B–C–N , 2007 .

[93]  Y. Iwamoto Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen , 2007 .

[94]  M. Jansen,et al.  NMR studies of short and intermediate range ordering of amorphous Si–B–N–C–H pre-ceramic at the pyrolysis stage of 600 °C , 2007 .

[95]  M. Weinmann,et al.  Fabrication of Fiber‐Reinforced Ceramic Composites by the Modified Slurry Infiltration Technique , 2007 .

[96]  H. Schmidt Si‐(B‐)C‐N Ceramics Derived from Preceramic Polymers: Stability and Nano‐Composite Formation , 2007 .

[97]  Ravi Kumar,et al.  Processing, crystallization and characterization of polymer derived nano-crystalline Si–B–C–N ceramics , 2006 .

[98]  M. Weinmann,et al.  Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n , 2006 .

[99]  T. Nishimura,et al.  Precipitation processing to synthesize fine polycarbosilane particles for precursors of silicon carbide powders , 2006 .

[100]  M. Weinmann,et al.  Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion , 2005 .

[101]  A. Zimmermann,et al.  Crystallization and creep behavior of Si-B-C-N ceramics , 2005 .

[102]  James S. Tulenko,et al.  Synthesis and Pyrolysis of Novel Polysilazane to SiBCN Ceramic , 2005 .

[103]  Dong‐Pyo Kim,et al.  Highly-resistant SiCBN films prepared by a simple spin-coating process with poly(borosilazane) , 2005 .

[104]  K. Khor,et al.  Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders , 2005 .

[105]  R. Nesper,et al.  A Construction Kit for Si−B−C−N Ceramic Materials Based on Borazine Precursors , 2005 .

[106]  F. Aldinger,et al.  Solid-state NMR investigations on Si-B-C-N ceramics derived from boron-modified poly(allylmethylsilazane) , 2005 .

[107]  H. Kleebe,et al.  Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature , 2005 .

[108]  D. Balzar,et al.  Structure and Electronic Transport Properties of Si‐(B)‐C‐N Ceramics , 2004 .

[109]  F. Aldinger,et al.  Novel Silicon‐Boron‐Carbon‐Nitrogen Materials Thermally Stable up to 2200°C , 2004 .

[110]  T. Parthasarathy,et al.  Characterization of Oxidized Polymer‐Derived SiBCN Fibers , 2004 .

[111]  K. Nickel,et al.  Precursor derived Si-B-C-N Ceramics: oxidation kinetics , 2004 .

[112]  M. Weinmann,et al.  Thermal Stability, Phase Evolution, and Crystallization in Si‐B‐C‐N Ceramics Derived from a Polyborosilazane Precursor , 2004 .

[113]  A. Colin,et al.  Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templatesElectronic supplementary information (ESI) available: XRD profiles, nitrogen physisorption data and pore size distribution calculated from density functional theory, for the xSi-HIPE0.035 series. See h , 2004 .

[114]  A. Zimmermann,et al.  High temperature deformation behaviour of crystallized Si–B–C–N ceramics obtained from a boron modified poly(vinyl)silazane polymeric precursor , 2004 .

[115]  R. Nesper,et al.  High-Yield Molecular Borazine Precursors for Si−B−N−C Ceramics , 2004 .

[116]  Dong‐Pyo Kim,et al.  Polymer derived Si–C–B–N ceramics via hydroboration from borazine derivatives and trivinylcyclotrisilazane , 2003 .

[117]  M. Jansen,et al.  SiBN3C Ceramic workpieces by pressureless pyrolysis without sintering aids: preparation, characterization and electrical properties , 2003 .

[118]  F. Aldinger,et al.  Synthesis and high temperature behavior of Si/B/C/N precursor-derived ceramics without "free carbon" , 2003 .

[119]  R. Riedel,et al.  Solid-state NMR investigations of the polymer route to SiBCN ceramics , 2003 .

[120]  R. Nesper,et al.  Functionalized Borazines as Precursors for New Silica-Gels , 2003 .

[121]  W. Frank,et al.  Diffusion in polymer-derived Si-(B-)C-N ceramics, particularly amorphous Si29B9C41N21 , 2003 .

[122]  J. Puszynski High Performance Non-Oxide Ceramics I Edited by Martin Jansen (Max-Planck-Institut für Festkorperforschung, Stuttgart). Springer-Verlag: Berlin, Heidelberg, New York. 2002. xvi + 198 pp. $149.00. ISBN 3-540-43131-4. , 2003 .

[123]  S. Bernard,et al.  Structural and mechanical properties of a high-performance BN fibre , 2002 .

[124]  M. Weinmann,et al.  Carbon nanotubes welded by precursor-derived silicoboron carbonitride ceramics: A TEM study , 2002 .

[125]  M. Weinmann,et al.  Dehydrocoupling of tris(hydridosilylethyl)boranes and cyanamide: a novel access to boron-containing polysilylcarbodiimides , 2002 .

[126]  F. Aldinger,et al.  Boron-modified poly(propenylsilazane)-derived Si–B–C–N ceramics: preparation and high temperature properties , 2002 .

[127]  Joachim Bill,et al.  Si-B-C-N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 2. Ceramization of polymers and high- temperature behavior of ceramic materials , 2002 .

[128]  Joachim Bill,et al.  Si-B-C-N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 1. Precursor synthesis , 2002 .

[129]  H. Scherrer,et al.  Comparison of 30Si diffusion in amorphous Si–C–N and Si–B–C–N precursor-derived ceramics , 2002 .

[130]  L. Sneddon,et al.  Silicon-based ceramics from polymer precursors , 2002 .

[131]  M. Weinmann,et al.  Solid‐state NMR and FT IR studies of the preparation of Si–B–C–N ceramics from ­boron‐modified polysilazanes , 2001 .

[132]  H. Seifert,et al.  Phase equilibria of precursor‐derived Si–(B–)C–N ceramics , 2001 .

[133]  R. Riedel,et al.  Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics , 2001 .

[134]  M. Weinmann,et al.  Dehydrocoupling of tris(hydridosilylethyl)boranes with ammonia or amines: a novel route to Si-B-C-N preceramic polymers , 2001 .

[135]  H. Seifert,et al.  Phase equilibria and thermal analysis of Si-C-N ceramics , 2001 .

[136]  D. Balzar,et al.  Silicoboron-Carbonitride Ceramics: A Class of High Temperature, Dopable Electronic Materials , 2001 .

[137]  M. Weinmann,et al.  Correlation of boron content and high temperature stability in Si–B–C–N ceramics II , 2000 .

[138]  G. Borchardt,et al.  Self-diffusion studies on 15N in amorphous Si3BC4.3N2 ceramics with ion implantation and secondary ion mass spectrometry , 2000 .

[139]  M. Weinmann,et al.  Design of Polymeric Si−B−C−N Ceramic Precursors for Application in Fiber-Reinforced Composite Materials , 2000 .

[140]  Peter Greil,et al.  Polymer Derived Engineering Ceramics , 2000 .

[141]  R. Corriu,et al.  Ceramics and Nanostructures from Molecular Precursors. , 2000, Angewandte Chemie.

[142]  R. Riedel,et al.  Silazane derived ceramics and related materials , 2000 .

[143]  R. Riedel,et al.  Synthesis of silyl substituted organoboranes by hydroboration of vinylsilanes , 2000 .

[144]  M. Weinmann,et al.  Synthesis and Thermal Behavior of Novel Si−B−C−N Ceramic Precursors , 2000 .

[145]  Sporn,et al.  Ceramic fibers for matrix composites in high-temperature engine applications , 1999, Science.

[146]  M. Weinmann,et al.  Boron-modified polysilylcarbodi-imides as precursors for Si–B–C–N ceramics: Synthesis, plastic-forming and high-temperature behavior , 1998 .

[147]  L. Interrante,et al.  Linear and hyperbranched polycarbosilanes with Si-CH2-Si bridging groups: a synthetic platform for the construction of novel functional polymeric materials , 1998 .

[148]  L. Sneddon,et al.  Second-generation polymeric precursors for BN and SiNCB ceramic materials , 1998 .

[149]  R. Paine,et al.  Synthesis of Silylborazines and Their Utilization as Precursors to Silicon‐Containing Boron Nitride☆ , 1998 .

[150]  D. Pine,et al.  Uniform Macroporous Ceramics and Plastics by Emulsion Templating , 1998 .

[151]  Y. C. Song,et al.  Curing polysilazane fibres by exposure to boron trichloride , 1998 .

[152]  M. Weinmann,et al.  Precursor-derived Si-B-C-N ceramics , 1998 .

[153]  L. Sneddon,et al.  Amine-Modified Polyborazylenes: Second-Generation Precursors to Boron Nitride , 1998 .

[154]  M. Jansen Highly stable ceramics through single source precursors , 1997 .

[155]  L. Sneddon,et al.  Reactions of monofunctional boranes with hydridopolysilazane : Synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials , 1997 .

[156]  M. Weinmann,et al.  Boron-containing polysilylcarbodi-imides: A new class of molecular precursors for Si-B-C-N ceramics , 1997 .

[157]  M. Jansen,et al.  Novel High‐Performance Ceramics—Amorphous Inorganic Networks from Molecular Precursors , 1997 .

[158]  G. Ziegler,et al.  Synthesis and Characterization of Silazane‐Based Polymers as Precursors for Ceramic Matrix Composites , 1997 .

[159]  M. Jansen,et al.  Properties of Amorphous SIBNC-Ceramic Fibres , 1996 .

[160]  R. Riedel,et al.  Boron-modified Inorganic Polymers—Precursors for the Synthesis of Multicomponent Ceramics , 1996 .

[161]  L. Sneddon,et al.  Synthesis, characterization, and ceramic conversion reactions of borazine/silazane copolymers : new polymeric precursors to SiNCB ceramics , 1995 .

[162]  C. Strohmann,et al.  Poly(ureidosilazanes) : preceramic polymeric precursors for silicon carbonitride and silicon nitride, synthesis, characterization, and pyrolytic conversion to Si3N4/SiC ceramics , 1995 .

[163]  F. Aldinger,et al.  Precursor‐derived Covalent Ceramics* , 1995 .

[164]  J. Pillot,et al.  Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics , 1995 .

[165]  A. Simon,et al.  Die Kristall‐ und Molekülstrukturen von (Me2SiNCN)4 (1) und Me3SiNCNSiMe3 (2) , 1994 .

[166]  R. Paine,et al.  SOME RECENT DEVELOPMENTS IN PRECURSOR ROUTES TO CERAMIC NANOCOMPOSITES , 1994 .

[167]  M. Tokita Trends in Advanced SPS Spark Plasma Sintering Systems and Technology , 1993 .

[168]  M. Jansen,et al.  New Materials in the System Si-(N,C)-B and Their Characterization , 1993 .

[169]  M. Pereira,et al.  Preparation of Silicon Carbonitrides from an Organosilicon Polymer: II, Thermal Behavior at High Temperatures under Argon , 1993 .

[170]  L. Sneddon,et al.  Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes : new polymeric precursors to SiNCB ceramic composites , 1993 .

[171]  W. R. Schmidt,et al.  Ammonia-induced pyrolytic conversion of a vinylic polysilane to silicon nitride , 1992 .

[172]  R. Brook,et al.  Synthesis of dense silicon-based ceramics at low temperatures , 1992, Nature.

[173]  D. Seyferth,et al.  Preceramic Polymers as “Reagents” in the Preparation of Ceramics , 1991 .

[174]  H. Plenio,et al.  Borasilazane polymeric precursors for borosilicon nitride , 1990 .

[175]  R. Laine,et al.  Preceramic polymer pyrolysis , 1989 .

[176]  F. Babonneau,et al.  Structural concepts on new amorphous covalent solids , 1988 .

[177]  D. Rowcliffe,et al.  Microstructural development in Si sub 3 N sub 4 /polysilazane bodies during heating , 1988 .

[178]  F. Aldinger,et al.  Die Bedeutung der Chemie für die Entwicklung von Hochleistungskeramiken , 1987 .

[179]  F. Aldinger,et al.  The Importance of Chemistry in the Development of High‐Performance Ceramics , 1987 .

[180]  R. Laine,et al.  Catalytic methods for the synthesis of oligosilazanes , 1986 .

[181]  H. Brown,et al.  Mechanism of hydroboration of alkenes with borane-Lewis base complexes. Evidence that the mechanism of the hydroboration reaction proceeds through a prior dissociation of such complexes , 1984 .

[182]  R. Wills,et al.  Siloxanes, silanes, and silazanes in the preparation of ceramics and glasses , 1983 .

[183]  J. Strang Personal View , 1981 .

[184]  S. Yajima Development of ceramics, especially silicon carbide fibres, from organosilicon polymers by heat treatment , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[185]  S. Yajima,et al.  Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus , 1978 .

[186]  S. YAJIMA,et al.  Development of a silicon carbide fibre with high tensile strength , 1976, Nature.

[187]  M. Omori,et al.  CONTINUOUS SILICON CARBIDE FIBER OF HIGH TENSILE STRENGTH , 1975 .

[188]  H. Nöth Notizen: Zur Spaltung der Si-N-Bindung durch lewis-acide Bor-Verbindungen , 1961 .

[189]  G. Fritz,et al.  Bildung siliciumorganischer Verbindungen. V. Die Thermische Zersetzung von Si(CH3)4 und Si(C2H5)4 , 1956 .

[190]  Yejing Dai,et al.  Preparation and electrochemical performance of polymer-derived SiBCN-graphene composite as anode material for lithium ion batteries , 2017 .

[191]  Paolo Colombo,et al.  Stereolithography of SiOC Ceramic Microcomponents , 2016, Advanced materials.

[192]  P. Colombo Polymer derived ceramics : from nano-structure to applications , 2010 .

[193]  M. Herrmann,et al.  Porous CeOX/SiC Nanocomposites Prepared from Reverse Polycarbosilane-Based Microemulsions , 2008 .

[194]  Ralf Riedel,et al.  高温用分離膜としての応用を思考したポリマープレカーサーからの SiBCN 系セラミックスの合成 , 2006 .

[195]  Ralf Riedel,et al.  ポリマーから誘導されたケイ素系セラミックス ─合成・性質・応用に関する総説─ , 2006 .

[196]  R. Riedel From molecules to materials — a novel route for the synthesis of advanced ceramics , 2005, Naturwissenschaften.

[197]  M. Jansen,et al.  Improved durability of Si/B/N/C random inorganic networks , 2005 .

[198]  M. Weinmann,et al.  Preparation of high-temperature stable Si-B-C-N fibers from tailored single source polyborosilazanes , 2005 .

[199]  M. Weinmann,et al.  Novel polysilazanes as precursors for silicon nitride/silicon carbide composites without "free" carbon , 2005 .

[200]  K. Nickel,et al.  Si/B/C/N/Al precursor-derived ceramics: Synthesis, high temperature behaviour and oxidation resistance , 2004 .

[201]  M. Jansen,et al.  Amorphous Multinary Ceramics in the Si-B-N-C System , 2002 .

[202]  G. Whitesides,et al.  Fabrication of High Performance Ceramic Microstructures from a Polymeric Precursor Using Soft Lithography , 2001 .

[203]  M. Weinmann,et al.  Plastic forming of preceramic polymers , 1999 .

[204]  P. Sherwood,et al.  Surface studies of potentially oxidation protective Si-B-N-C films for carbon fibers , 1997 .

[205]  F. Aldinger,et al.  A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.

[206]  F. Aldinger,et al.  Interface characterization of nanosized B-doped Si3N4/SiC ceramics , 1996 .

[207]  Y. Sugahara,et al.  Preparation of AlN from poly(ethyliminoalane) via pyrolysis , 1996 .

[208]  F. Babonneau,et al.  The Evolutionary Process during Pyrolytic Transformation of Poly(N-methylsilazane) from a Preceramic Polymer into an Amorphous Silicon Nitride/Carbon Composite , 1995 .

[209]  H. Kleebe,et al.  A covalent micro/nano-composite resistant to high-temperature oxidation , 1995, Nature.

[210]  R. Pailler,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[211]  P. Mutin,et al.  Silicon carbonitride from polymeric precursors: thermal cross-linking and pyrolysis of oligosilazane model compounds , 1992 .

[212]  M. Jansen,et al.  Synthesis of Advanced Ceramics in the Systems Si-B-N and Si-B-N-C Employing Novel Precursor Compounds , 1992 .

[213]  J. Lipowitz,et al.  Ceramics From Hydridopolysilazane , 1986 .

[214]  C. Prud'homme,et al.  A Liquid Silazane Precursor To Silicon Nitride , 1983 .

[215]  P. Jones,et al.  The hydroboration of methylchlorosilylalkenes , 1972 .