Rational Structure-Based Drug Design

Structure-based drug design (SBDD) is an important technique in computer-aided drug design, which utilises structural information of a targeted protein to elucidate novel drug-like compounds. This rapidly advancing technique has brought new breakthroughs in pharmaceutical development. Burgeoning structural information on proteins and small molecules has provided the scientific community with many new drug targets and novel opportunities for future drug discovery. This article provides a comprehensive overview of the current status of in silico SBDD and discusses the current challenges and limitations. Key strategies in the field of SBDD will be illustrated through a case study that explores the design of anti-malarial drugs targeting Plasmodium falciparum hemoglobin degrading enzyme Plasmepsin II.

[1]  Richard A. Friesner,et al.  Flexible ligand docking with Glide. , 2007, Current protocols in bioinformatics.

[2]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.

[3]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[4]  Yongbo Hu,et al.  Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy , 2009, J. Chem. Inf. Model..

[5]  S. Parasuraman,et al.  Protein data bank , 2012, Journal of pharmacology & pharmacotherapeutics.

[6]  G. Schneider,et al.  PocketPicker: analysis of ligand binding-sites with shape descriptors , 2007, Chemistry Central Journal.

[7]  Fabrizio Giordanetto,et al.  Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. , 2014, Chemistry & biology.

[8]  J F Davies,et al.  Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. , 1997, Journal of medicinal chemistry.

[9]  Tao Jiang,et al.  ChemmineR: a compound mining framework for R , 2008, Bioinform..

[10]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[11]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[12]  Ming-Jing Hwang,et al.  Methods for predicting protein-ligand binding sites. , 2015, Methods in molecular biology.

[13]  Ben M. Webb,et al.  ModBase, a database of annotated comparative protein structure models and associated resources , 2013, Nucleic Acids Res..

[14]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[15]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[16]  Ruth Huey,et al.  Computational protein–ligand docking and virtual drug screening with the AutoDock suite , 2016, Nature Protocols.

[17]  M. Lill Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. , 2011, Biochemistry.

[18]  B. Zagrovic,et al.  Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. , 2010, Biophysical journal.

[19]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[20]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[21]  John D. Westbrook,et al.  The Protein Model Portal , 2008, Journal of Structural and Functional Genomics.

[22]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[23]  Gerhard Klebe,et al.  Computer‐Aided Design and Synthesis of Nonpeptidic Plasmepsin II and IV Inhibitors , 2008, ChemMedChem.

[24]  Xavier Barril,et al.  rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids , 2014, PLoS Comput. Biol..

[25]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[26]  Ian A. Watson,et al.  Rules for identifying potentially reactive or promiscuous compounds. , 2012, Journal of medicinal chemistry.

[27]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[28]  Torsten Schwede,et al.  The SWISS-MODEL Repository and associated resources , 2008, Nucleic Acids Res..

[29]  P. Seeburg,et al.  Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. , 2000, Science.

[30]  M L Teodoro,et al.  Conformational flexibility models for the receptor in structure based drug design. , 2003, Current pharmaceutical design.

[31]  Michael Nilges,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btl655 Structural bioinformatics Biskit—A software platform for structural bioinformatics , 2006 .

[32]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[33]  Jinn-Moon Yang,et al.  GEMDOCK: A generic evolutionary method for molecular docking , 2004, Proteins.

[34]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[35]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[36]  D. Frenkel,et al.  Molecular dynamics simulations. , 2002, Current opinion in structural biology.

[37]  Bingding Huang,et al.  MetaPocket: a meta approach to improve protein ligand binding site prediction. , 2009, Omics : a journal of integrative biology.

[38]  Stefan Paula,et al.  Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase. , 2010, Biophysical chemistry.

[39]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[40]  David A. Fidock,et al.  Drug discovery: Priming the antimalarial pipeline , 2010, Nature.

[41]  H. Gohlke,et al.  Structure-based computational analysis of protein binding sites for function and druggability prediction. , 2012, Journal of biotechnology.

[42]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[43]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[44]  M. Schroeder,et al.  LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation , 2006, BMC Structural Biology.

[45]  Thomas E. Exner,et al.  Influence of Protonation, Tautomeric, and Stereoisomeric States on Protein-Ligand Docking Results , 2009, J. Chem. Inf. Model..

[46]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[47]  Mona Singh,et al.  Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure , 2009, PLoS Comput. Biol..

[48]  Christophe G. Lambert,et al.  ESyPred3D: Prediction of proteins 3D structures , 2002, Bioinform..

[49]  M Hendlich,et al.  LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. , 1997, Journal of molecular graphics & modelling.

[50]  A Abrahamsson,et al.  The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. , 2001, Thrombosis research.

[51]  Oleksandr V. Buzko,et al.  Modified AutoDock for accurate docking of protein kinase inhibitors , 2002, J. Comput. Aided Mol. Des..

[52]  Jürgen Bajorath,et al.  Virtual screening methods that complement HTS. , 2004, Combinatorial chemistry & high throughput screening.

[53]  J. Varghese,et al.  Development of neuraminidase inhibitors as anti‐influenza virus drugs , 1999 .

[54]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[55]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[56]  William J. Allen,et al.  DOCK 6: Impact of new features and current docking performance , 2015, J. Comput. Chem..

[57]  Shashank Shekhar,et al.  Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins , 2014, BMC Bioinformatics.

[58]  Frank Oellien,et al.  Enhanced CACTVS Browser of the Open NCI Database , 2002, J. Chem. Inf. Comput. Sci..

[59]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[60]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[61]  B. Honig,et al.  On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. , 2006, Biophysical journal.

[62]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[63]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[64]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[65]  Ruben Abagyan,et al.  Docking and scoring with ICM: the benchmarking results and strategies for improvement , 2012, Journal of Computer-Aided Molecular Design.

[66]  Joanna Owens,et al.  Target validation: Determining druggability , 2007, Nature Reviews Drug Discovery.

[67]  R. Wade,et al.  Computational approaches to identifying and characterizing protein binding sites for ligand design , 2009, Journal of molecular recognition : JMR.

[68]  C. Lipinski Drug-like properties and the causes of poor solubility and poor permeability. , 2000, Journal of pharmacological and toxicological methods.

[69]  Roland L. Dunbrack,et al.  Backbone-dependent rotamer library for proteins. Application to side-chain prediction. , 1993, Journal of molecular biology.

[70]  Anders Hallberg,et al.  Plasmepsins as potential targets for new antimalarial therapy , 2006, Medicinal research reviews.

[71]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[72]  Dario Ghersi,et al.  EASYMIFS and SITEHOUND: a toolkit for the identification of ligand-binding sites in protein structures , 2009, Bioinform..

[73]  Tao Wang,et al.  Advances in Computational Structure-Based Drug Design and Application in Drug Discovery. , 2015, Current topics in medicinal chemistry.

[74]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[75]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[76]  Fabian López-Vallejo,et al.  Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. , 2011, Combinatorial chemistry & high throughput screening.

[77]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[78]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[79]  D. Bojanic,et al.  Impact of high-throughput screening in biomedical research , 2011, Nature Reviews Drug Discovery.

[80]  L. Pustilnik,et al.  Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. , 1999, The Journal of pharmacology and experimental therapeutics.

[81]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[82]  W. F. de Azevedo,et al.  Bio-inspired algorithms applied to molecular docking simulations. , 2011, Current medicinal chemistry.

[83]  Didier Rognan,et al.  Comparative evaluation of eight docking tools for docking and virtual screening accuracy , 2004, Proteins.

[84]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[85]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[86]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[87]  Stewart A. Adcock,et al.  Molecular dynamics: survey of methods for simulating the activity of proteins. , 2006, Chemical reviews.