From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices
暂无分享,去创建一个
[1] Kenneth B. Huber. Department of Mathematics , 1894 .
[2] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[3] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[4] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[5] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[6] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[7] P. Moran,et al. Mathematics of Statistics , 1948, Nature.
[8] J. Neumann,et al. Numerical inverting of matrices of high order. II , 1951 .
[9] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[10] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[11] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[12] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[13] L. Arnold,et al. On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .
[14] L. Pastur. On the spectrum of random matrices , 1972 .
[15] V. Uppuluri,et al. Asymptotic distribution of eigenvalues of random matrices , 1972 .
[16] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[17] Richard P. Stanley,et al. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.
[18] Gene H. Golub,et al. Matrix computations , 1983 .
[19] Jeffrey C. Lagarias,et al. On the Tightest Packing of Sums of Vectors , 1983, Eur. J. Comb..
[20] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[21] Zoltán Füredi,et al. Solution of the Littlewood-Offord problem in high dimensions , 1988 .
[22] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[23] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[24] M. Talagrand. A new look at independence , 1996 .
[25] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[26] V. L. GIRKO. Strong Circular Law , 1997 .
[27] L. Trefethen,et al. Numerical linear algebra , 1997 .
[28] V. Girko. A Refinement of the Central Limit Theorem for Random Determinants , 1998 .
[29] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[30] D. Spielman,et al. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .
[31] The Strong Circular Law. Twenty years later. Part II , 2004 .
[32] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[33] Daniel A. Spielman. The Smoothed Analysis of Algorithms , 2005, FCT.
[34] S. Chatterjee. A simple invariance theorem , 2005, math/0508213.
[35] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[36] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[37] Terence Tao,et al. On random ±1 matrices: Singularity and determinant , 2006, Random Struct. Algorithms.
[38] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[39] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[40] D. Spielman,et al. Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.
[41] Additive Combinatorics: Contents , 2006 .
[42] P. Deift. Universality for mathematical and physical systems , 2006, math-ph/0603038.
[43] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2006 .
[44] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[45] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[46] G. Freiman. Foundations of a Structural Theory of Set Addition , 2007 .
[47] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[48] Terence Tao,et al. The condition number of a randomly perturbed matrix , 2007, STOC '07.
[49] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[50] F. Gotze,et al. On the Circular Law , 2007, math/0702386.
[51] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[52] M. Rudelson,et al. The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.
[53] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[54] Van H. Vu,et al. Concentration of Random Determinants and Permanent Estimators , 2009, SIAM J. Discret. Math..
[55] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[56] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[57] ACTA ARITHMETICA , 2022 .
[58] T. Tao,et al. Random Matrices: a General Approach for the Least Singular Value Problem , 2022 .