Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete

We show that finding a minimal number of landmark nodes for a unique virtual addressing by hop-distances in wireless ad-hoc sensor networks is NP-complete even if the networks are unit disk graphs that contain only Gabriel edges. This problem is equivalent to Metric Dimension for Gabriel unit disk graphs.

[1]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[2]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[3]  Ioannis G. Tollis,et al.  Planar grid embedding in linear time , 1989 .

[4]  Erik Jan van Leeuwen,et al.  On the Complexity of Metric Dimension , 2011, ESA.

[5]  Egon Wanke,et al.  Hierarchical Bipartition Routing for delivery guarantee in sparse wireless ad hoc sensor networks with obstacles , 2013, ArXiv.

[6]  David E. Culler,et al.  Beacon vector routing: scalable point-to-point routing in wireless sensornets , 2005, NSDI.

[7]  Glenn G. Chappell,et al.  Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..

[8]  Debra L. Boutin Determining Sets, Resolving Sets, and the Exchange Property , 2008, Graphs Comb..

[9]  Mathias Hauptmann,et al.  On Approximation Complexity of Metric Dimension Problem , 2010, IWOCA.

[10]  E. T. Baskoro,et al.  The metric dimension of regular bipartite graphs , 2011 .

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[13]  David Simplot-Ryl,et al.  Jumps: Enhancing hop-count positioning in sensor networks using multiple coordinates , 2006, ArXiv.

[14]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[15]  Stefano Chessa,et al.  GPS free coordinate assignment and routing in wireless sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[16]  Leonidas J. Guibas,et al.  GLIDER: gradient landmark-based distributed routing for sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[17]  L. Devroye,et al.  ON THE SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS , 2002 .

[18]  INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 13-17 March 2005, Miami, FL, USA , 2005, INFOCOM.

[19]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[20]  David Simplot-Ryl,et al.  Cost over Progress Based Energy Efficient Routing over Virtual Coordinates in Wireless Sensor Networks , 2007, 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks.

[21]  David G. Kirkpatrick,et al.  On the Spanning Ratio of Gabriel Graphs and beta-skeletons , 2002, LATIN.

[22]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .