A two-level clustering approach for multidimensional transfer function specification in volume visualization

Multidimensional transfer functions can perform more sophisticated classification of volumetric objects compared to 1-D transfer functions. However, visualizing and manipulating the transfer function space is non-intuitive when its dimension goes beyond 3-D, thus making user interaction difficult. In this paper, we propose to address the multidimensional transfer function design problem by taking a two-level clustering approach, where the first-level clustering by the self-organizing map (SOM) projects high-dimensional feature data to a 2-D topology preserving map, and the second-level clustering on the SOM neurons reduces the design freedom from a large number of SOM neurons to a manageable number of clusters. Based on the two-level clustering results, we propose a novel volume exploration scheme that provides top-down navigation to users exploring the volume. Guided by an informative volume overview, interesting structures in the volume are discovered interactively by the user selecting clusters to visualize and modifying the clustering results when necessary. Our interface keeps track of each interesting structure discovered, which not only enables users to inspect individual structures closely, but also allows them to compose the final visualization by fusing the structures deemed important.

[1]  Penny Rheingans,et al.  Texture-based Transfer Functions for Direct Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Anna Vilanova,et al.  Automating Transfer Function Design for Volume Rendering Using Hierarchical Clustering of Material Boundaries , 2006, EuroVis.

[4]  Stefan Bruckner,et al.  Volume visualization based on statistical transfer-function spaces , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[5]  Joseph JáJá,et al.  Hierarchical Exploration of Volumes Using Multilevel Segmentation of the Intensity-Gradient Histograms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Wolfgang Rosenstiel,et al.  Automatic Cluster Detection in Kohonen's SOM , 2008, IEEE Transactions on Neural Networks.

[7]  Stefan Wesarg,et al.  3D Visualization of Medical Image Data Employing 2D Histograms , 2009, 2009 Second International Conference in Visualisation.

[8]  Tommy W. S. Chow,et al.  Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density , 2004, Pattern Recognit..

[9]  Lars Linsen,et al.  Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[10]  Alfred Ultsch,et al.  U *-Matrix : a Tool to visualize Clusters in high dimensional Data , 2004 .

[11]  Carla Maria Dal Sasso Freitas,et al.  Design of Multi-dimensional Transfer Functions Using Dimensional Reduction , 2007, EuroVis.

[12]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[13]  C. Chui,et al.  New device for single‐stage in‐office secondary tracheoesophageal puncture: Animal studies , 2014, Head & neck.

[14]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[15]  Jian Zhang,et al.  Automating Transfer Function Design with Valley Cell‐Based Clustering of 2D Density Plots , 2012, Comput. Graph. Forum.

[16]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[17]  Eduard Grller,et al.  Curvature-Based Transfer Functions for Direct Volume Rendering , 2000 .

[18]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[19]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[21]  Jian Zhang,et al.  Efficient Volume Exploration Using the Gaussian Mixture Model , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Xin Zhao,et al.  Multi-dimensional Reduction and Transfer Function Design using Parallel Coordinates , 2010, VG@Eurographics.

[23]  Constantin Halatsis,et al.  Two-level Clustering of Web Sites Using Self-Organizing Maps , 2008, Neural Processing Letters.

[24]  Maryann E. Martone,et al.  Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets , 2010, Inf. Vis..

[25]  A. Ultsch,et al.  Self-Organizing Neural Networks for Visualisation and Classification , 1993 .

[26]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[27]  Mu-Chun Su,et al.  An efficient initialization scheme for the self-organizing feature map algorithm , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[28]  Ling Guan,et al.  Intuitive Volume Exploration through Spherical Self-Organizing Map , 2012, WSOM.

[29]  Jan Platos,et al.  GPU Based Parallelism for Self-Organizing Map , 2011, IHCI.

[30]  Xin Zhao,et al.  Modified Dendrogram of Attribute Space for Multidimensional Transfer Function Design , 2012, IEEE Transactions on Visualization and Computer Graphics.

[31]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[32]  Fabien Moutarde,et al.  Fast semi-automatic segmentation algorithm for Self-Organizing Maps , 2004, ESANN.

[33]  Wolfgang Rosenstiel,et al.  Detection of cluster in Self-Organizing Maps for controlling a prostheses using nerve signals , 2001, ESANN.

[34]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[35]  Sim Heng Ong,et al.  Automatic transfer function design for medical visualization using visibility distributions and projective color mapping , 2013, Comput. Medical Imaging Graph..

[36]  A. Ultsch Maps for the Visualization of high-dimensional Data Spaces , 2003 .

[37]  Xiaoru Yuan,et al.  Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates , 2011, 2011 IEEE Pacific Visualization Symposium.

[38]  Kwan-Liu Ma,et al.  The Occlusion Spectrum for Volume Classification and Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[39]  Matjaz Bevk,et al.  A statistical approach to texture description of medical images: a preliminary study , 2002, Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002).

[40]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[41]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[42]  Jenq-Haur Wang,et al.  Feature extraction using bionic particle swarm tracing for transfer function design in direct volume rendering , 2013, The Visual Computer.

[43]  Fabien Moutarde,et al.  U*F clustering: a new performant "cluster-mining" method based on segmentation of Self-Organizing Maps , 2005 .

[44]  Sim Heng Ong,et al.  A clustering-based system to automate transfer function design for medical image visualization , 2011, The Visual Computer.

[45]  Anna Vilanova,et al.  Visualization of boundaries in volumetric data sets using LH histograms , 2006, IEEE Transactions on Visualization and Computer Graphics.

[46]  Melody Y. Kiang,et al.  Extending the Kohonen self-organizing map networks for clustering analysis , 2002 .

[47]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.