Recent advances on H2 sensor technologies based on MOX and FET devices: A review

Abstract The importance of metal oxide semiconductor (MOX) and field effect transistor (FET) based sensors has been increasing due to their extended practical applications for gas detection. Various investigations have confirmed that gas sensing characteristics depend on the sensitivity of the metal oxide and catalytic materials. In recent years, hydrogen gas sensor technology has been progressively more capable in practical applications. The propagation velocity of hydrogen flames is high enough to cause severe explosion over an extensive range of 4%–75% H2. Therefore, the use of hydrogen carries a great risk, and the requirement for its leakage detection is imperative in hydrogen generation, transportation, stockpiling, and its utilization. Usage of MOX and FETs has increased tremendously in designing precise hydrogen sensors. Therefore, in this review, the authors have focused on the recent development in MOX and FET based hydrogen sensors. MOX sensors are most widely available as commercialized ones.Also, FET-type gas sensors have many advantages, compared with traditional ones owing to their reduced shape, size, and lower production cost. Nevertheless, the processing parameters and reproducibility need to be enhanced for expanding their applications. In this review, the role of the important sensing parameters, e.g., measurement range, sensitivity, selectivity, response and recovery time, on the sensing mechanism and operation, and the most recent innovation and improvement in MOX and FET sensing technologies are discussed. Finally, we report the sensing techniques, mechanism and factors affecting the sensitivity for MOX and MOSFET type sensors.

[1]  Himadri Sekhar Maiti,et al.  Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors , 2006 .

[2]  L. A. Patil,et al.  Highly sensitive and quickly responding ultrasonically sprayed nanostructured SnO2 thin films for hydrogen gas sensing , 2009 .

[3]  Rainer Adelung,et al.  Influence of CuO nanostructures morphology on hydrogen gas sensing performances , 2016 .

[4]  K. Yoo,et al.  Nano-grained thin-film indium tin oxide gas sensors for H2 detection , 2005 .

[5]  D. Davazoglou,et al.  Low Pressure Chemically Vapor Deposited WO 3 Thin Films for Integrated Gas Sensor Applications , 1998 .

[6]  I. Park,et al.  Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection , 2014 .

[7]  Minghong Yang,et al.  Fiber optic hydrogen sensors: a review , 2014 .

[8]  D. S. Vlachos,et al.  Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors , 1997 .

[9]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[10]  Zhi Chen,et al.  High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide , 2009 .

[11]  M. Egashira,et al.  Hydrogen sensing properties of SnO2 subjected to surface chemical modification with ethoxysilanes , 2000 .

[12]  G. Pajonk,et al.  SPILLOVER OF SORBED SPECIES , 1987 .

[13]  R. P. Gupta,et al.  A room temperature HSGFET ammonia sensor based on iridium oxide thin film , 2002 .

[14]  Zhongming Zeng,et al.  The detection of H2S at room temperature by using individual indium oxide nanowire transistors , 2009, Nanotechnology.

[15]  Tae Il Lee,et al.  Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor , 2010 .

[16]  V. S. Sapkal,et al.  Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors , 2006 .

[17]  C. Gu,et al.  Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network , 2007 .

[18]  V. Olevano,et al.  Peculiarities of surface doping with Cu in SnO2 thin film gas sensors , 1997 .

[19]  F. Solzbacher,et al.  TiOx-modified NiO thin films for H2 gas sensors: effects of TiOx-overlayer sputtering parameters , 2000 .

[20]  Jung-Sik Kim,et al.  MEMS based hydrogen sensor with the highly porous Au-CNT film as a sensing material , 2017, Journal of Materials Science: Materials in Electronics.

[21]  M. Matsuoka,et al.  gamma -Fe 2 O 3 Ceramic Gas Sensor , 1982 .

[22]  S. K. Hazra,et al.  High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films , 2006 .

[23]  Ingemar Lundström,et al.  High Temperature Sensors Based on Metal–Insulator–Silicon Carbide Devices , 1997 .

[24]  Yu Wang,et al.  Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature , 2012 .

[25]  Makoto Egashira,et al.  Improvement of SO2 sensing properties of WO3 by noble metal loading , 2001 .

[26]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[27]  Kengo Shimanoe,et al.  Theory of power laws for semiconductor gas sensors , 2008 .

[28]  Jong-Ho Lee,et al.  Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate , 2016 .

[29]  S. Nakagomi,et al.  Electrical properties dependent on H2 gas for new structure diode of Pt–thin WO3–SiC , 2003 .

[30]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[31]  Vladimir M. Aroutiounian,et al.  Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells , 2007 .

[32]  Harlan U. Anderson,et al.  NANOSTRUCTURED OXIDE THIN FILMS FOR GAS SENSORS , 1998 .

[33]  Vladimir M. Aroutiounian,et al.  Study of sensitivity and response kinetics changes for SnO2 thin-film hydrogen sensors , 2009 .

[34]  J. Tsai,et al.  InGaP/InGaAs field-effect transistor typed hydrogen sensor , 2016 .

[35]  U. Böttger,et al.  Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits , 1989 .

[36]  J. Roggen,et al.  Tin(IV) oxide gas sensors: thick-film versus metallo-organic based sensors , 1989 .

[37]  Y. Shimizu,et al.  Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases , 1996 .

[38]  Jung-Sik Kim,et al.  Multilayer thin film deposition of Pd/Ag alloy as an application for hydrogen sensing , 2017, 2017 IEEE Sensors Applications Symposium (SAS).

[39]  Soohwan Jang,et al.  Platinum-functionalized black phosphorus hydrogen sensors , 2017 .

[40]  T. Pompl,et al.  Ozone-enhanced molecular beam deposition of nickel oxide (NiO) for sensor applications , 1997 .

[41]  Zhengrong Yang,et al.  One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles , 2002 .

[42]  Sams Jarin,et al.  A review on recent advances of CNTs as gas sensors , 2017 .

[43]  Katarzyna Zakrzewska,et al.  SnO2–TiO2 solid solutions for gas sensors , 1998 .

[44]  Florian Solzbacher,et al.  H2 gas sensor performance of NiO at high temperatures in gas mixtures , 2010 .

[45]  Jung-Sik Kim,et al.  Gas sensing characteristics of low-powered dual MOSFET hydrogen sensors , 2013 .

[46]  Toru Maekawa,et al.  EFFECTS OF GAS DIFFUSIVITY AND REACTIVITY ON SENSING PROPERTIES OF THICK FILM SNO2-BASED SENSORS , 1998 .

[47]  Jung-Sik Kim,et al.  Pd/Ag alloy as an application for hydrogen sensing , 2017 .

[48]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[49]  Zhifu Liu,et al.  Hydrogen sensing properties of Pd-doped SnO2 sputtered films with columnar nanostructures , 2009 .

[50]  C. Svensson,et al.  Hydrogen leak detector using a Pd‐gate MOS transistor , 1975 .

[51]  Ingemar Lundström,et al.  A hydrogen−sensitive MOS field−effect transistor , 1975 .

[52]  George A. Mousdis,et al.  The effect of Au and Pt nanoclusters on the structural and hydrogen sensing properties of SnO2 thin films , 2009 .

[53]  Masanori Ando,et al.  Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air , 2006 .

[54]  U. Lampe,et al.  Metal Oxide Sensors , 1995, International Conference on Solid-State Sensors, Actuators and Microsystems.

[55]  M. Cao,et al.  Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures , 2009 .

[56]  Dongzhi Zhang,et al.  Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route , 2017 .

[57]  Vladimir M. Aroutiounian,et al.  INVESTIGATION OF HYDROGEN SENSOR MADE OF ZNO THIN FILM , 2008 .

[58]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[59]  Wojtek Wlodarski,et al.  Gas Sensing Properties of P-type Semiconducting Cr-doped TiO2 Thin Films , 2002 .

[60]  Norio Miura,et al.  Hydrothermally treated sol solution of tin oxide for thin-film gas sensor , 2000 .

[61]  Kengo Shimanoe,et al.  Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2 , 2005 .

[62]  Quanfang Chen,et al.  Micromachined nanocrystalline silver doped SnO2 H2S sensor , 2006 .

[63]  Ingemar Lundström,et al.  Hydrogen sensitive mos-structures: Part 1: Principles and applications , 1981 .

[64]  Fujian Ren,et al.  Grain boundaries dependent hydrogen sensitivity in MAO-TiO2 thin films sensors , 2010 .

[65]  Denise M. Wilson,et al.  Chemical sensors for portable, handheld field instruments , 2001 .

[66]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[67]  Jeffrey Dong,et al.  Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel , 2015 .

[68]  Ingemar Lundström,et al.  High temperature catalytic metal field effect transistors for industrial applications , 2000 .

[69]  S. Nakagomi,et al.  Electrical characterization and hydrogen gas sensing properties of a n-ZnO∕p-SiC Pt-gate metal semiconductor field effect transistor , 2007 .

[70]  H. Meixner,et al.  Selective gas detection with high-temperature operated metal oxides using catalytic filters , 2000 .

[71]  Quanfang Chen,et al.  Micromachined sol–gel carbon nanotube/SnO2 nanocomposite hydrogen sensor , 2008 .

[72]  Meng Tao,et al.  LSDA+U study of cupric oxide : Electronic structure and native point defects , 2006 .

[73]  Adisorn Tuantranont,et al.  Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films , 2009 .

[74]  David P. Norton,et al.  Sensitivity of Pt/ZnO schottky diode characteristics to hydrogen , 2004 .

[75]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[76]  Chanyong Hwang,et al.  Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films , 2009 .

[77]  Zhang Jiancheng,et al.  Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors , 1999 .

[78]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[79]  Makoto Egashira,et al.  Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness , 1990 .

[80]  Daniel John Blackwood,et al.  Work function and spectroscopic studies of interactions between conducting polymers and organic vapors , 1991 .

[81]  O K Tan,et al.  High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature , 2009, Nanotechnology.

[82]  B. Mann,et al.  The detection and measurement of CO using ZnO single crystals , 1984 .

[83]  Shinzo Takata,et al.  Zinc‐oxide thin‐film ammonia gas sensors with high sensitivity and excellent selectivity , 1986 .

[84]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[85]  Ahsanulhaq Qurashi,et al.  A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications , 2009 .

[86]  A. Salehi,et al.  Gas-sensing properties of indium-doped SnO2 thin films with variations in indium concentration , 2003 .

[87]  Ahsanulhaq Qurashi,et al.  Fabrication and gas sensing properties of In2O3 nanopushpins , 2009 .

[88]  Mohd. Hanif Yaacob,et al.  Hydrogen sensors based on 2D WO3 nanosheets prepared by anodization , 2017 .

[89]  Ho Won Jang,et al.  One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues , 2010, Sensors.

[90]  K. Fukui,et al.  H2 selective gas sensor based on SnO2 , 1998 .

[91]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[92]  Geraint Williams,et al.  The effect of oxygen partial pressure on the response of tin (IV) oxide based gas sensors , 1991 .

[93]  Ingemar Lundström,et al.  Hydrogen adsorption states at the external and internal palladium surfaces of a palladium‐silicon dioxide‐silicon structure , 1985 .

[94]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[95]  G. Choi,et al.  CO gas sensing properties of ZnO–CuO composite , 1998 .

[96]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[97]  Ingemar Lundström,et al.  Twenty-five years of field effect gas sensor research in Linköping , 2007 .

[98]  Kengo Shimanoe,et al.  Sensing properties of SnO2–Co3O4 composites to CO and H2 , 2004 .

[99]  Tao Hang,et al.  Effect of Mg doping on the hydrogen-sensing characteristics of ZnO thin films , 2011 .

[100]  H. Teterycz,et al.  A new metal oxide catalyst in alcohol condensation , 2001 .

[101]  Jim P. Zheng,et al.  Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure , 2007 .

[102]  G. Choi,et al.  The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor , 2002 .

[103]  Yigal Komem,et al.  Tunable gas sensing properties of p- and n-doped ZnO thin films , 2010 .

[104]  D. Choi,et al.  H2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ion-assisted deposition with/without an activator layer , 1997 .

[105]  Chemical and physical FET-based sensors or variations on an equation , 2005 .

[106]  S. Han,et al.  Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor , 2005 .

[107]  Jung-Sik Kim,et al.  Highly sensitive dual-FET hydrogen gas sensors with a surface modified gate electrode , 2015 .

[108]  Ingemar Lundström,et al.  Reversible hydrogen annealing of metal‐oxide‐silicon carbide devices at high temperatures , 1995 .

[109]  W. Wlodarski,et al.  Nanoporous TiO2 thin film based conductometric H2 sensor , 2009 .

[110]  Hung-Ta Wang,et al.  Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN∕GaN high electron mobility transistors , 2005 .

[111]  Jean-Baptiste Sanchez,et al.  Silicon-Micromachined Gas Chromatographic Columns for the Development of Portable Detection Device , 2010, J. Sensors.

[112]  C. Li,et al.  Doping dependent NH3 sensing of indium oxide nanowires , 2003 .

[113]  Jung-Sik Kim,et al.  Design and fabrication of micro hydrogen gas sensors using palladium thin film , 2012 .

[114]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[115]  Gerhard Müller,et al.  Response mechanism of SiC-based MOS field-effect gas sensors , 2002 .

[116]  C. Liu,et al.  Silicon based microfabricated tin oxide gas sensor incorporating use of Hall effect measurement , 2000 .

[117]  L. Boon-Brett,et al.  Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part II – selected sensor test results , 2009 .

[118]  Ji Haeng Yu,et al.  ELECTRICAL AND CO GAS SENSING PROPERTIES OF ZNO-SNO2 COMPOSITES , 1998 .

[119]  C. Rao,et al.  Gas-sensing characteristics of ZnO and copper-impregnated ZnO , 1991 .

[120]  C. Duriez,et al.  Precursor state in the chemisorption of CO on supported palladium clusters , 1991 .

[121]  Roghayeh Ghasempour,et al.  Pd doped WO3 films prepared by sol–gel process for hydrogen sensing , 2010 .

[122]  Minghong Yang,et al.  Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material , 2012 .

[123]  Wen-Yaw Chung,et al.  The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor , 2000 .

[124]  H. Meixner,et al.  On the mechanism of hydrogen sensing with SiO2 modificated high temperature Ga2O3 sensors , 2001 .

[125]  Chao Zhang,et al.  Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review , 2017 .

[126]  F. Solzbacher,et al.  Structural and gas-sensing properties of V2O5–MoO3 thin films for H2 detection , 2001 .

[127]  Richard J. Ewen,et al.  Thick film organic vapour sensors based on binary mixtures of metal oxides , 2003 .

[128]  Sadaki Nakano,et al.  FET hydrogen-gas sensor with direct heating of catalytic metal , 2008 .

[129]  I. Eisele,et al.  Low temperature hydrogen detection at high concentrations: comparison of platinum and iridium☆ , 2001 .

[130]  F. Solzbacher,et al.  A new preparation method for sputtered MoO3 multilayers for the application in gas sensors , 2001 .

[131]  C. Rivkin,et al.  An overview of hydrogen safety sensors and requirements , 2011 .

[132]  S. Semancik,et al.  Conductance response of Pd/SnO2 (110) model gas sensors to H2 and O2 , 1990 .

[133]  Shuichi Kagawa,et al.  Study on a Detector for Gaseous Components Using Semiconductive Thin Films. , 1966 .

[134]  Yulong Xu,et al.  Metal-semiconductor ohmic contact of SnO2-based ceramic gas sensors , 1997 .

[135]  Norio Miura,et al.  PREPARATION OF INDIUM OXIDE THIN FILM BY SPIN-COATING METHOD AND ITS GAS-SENSING PROPERTIES , 1998 .

[136]  S. Manorama,et al.  Hierarchical In(OH)3 as a Precursor to Mesoporous In2O3 Nanocubes: A Facile Synthesis Route, Mechanism of Self-Assembly, and Enhanced Sensing Response toward Hydrogen , 2014 .

[137]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .