Effects Of Traffic Control On The Soil Physical Quality And The Cultivation Of Sugarcane [controle De Tráfego E Seu Efeito Na Qualidade Física Do Solo E No Cultivo Da Cana-de-açúcar]

SUMMARY The cultivation of sugarcane with intensive use of machinery, especially for harvest, induces soil compaction, affecting the crop development. The control of agricultural traffic is an alternative of management in the sector, with a view to preserve the soil physical quality, resulting in increased sugarcane root growth, productivity and technological quality. The objective of this study was to evaluate the physical quality of an Oxisol with and without control traffic and the resulting effects on sugarcane root development, productivity and technological quality. The following managements were tested: no traffic control (NTC), traffic control consisting of an adjustment of the track width of the tractor and sugarcane trailer (TC1) and traffic control consisting of an adjustment of the track width of the tractor and trailer and use of an autopilot (TC2). Soil samples were collected (layers 0.00-0.10; 0.10-0.20 and 0.20-0.30 m) in the plant rows, inter-row center and seedbed region, 0.30 m away from the plant row. The productivity was measured with a specific weighing scale. The technological variables of sugarcane were measured in each plot. Soil cores were collected to analyze the root system. In TC2, the soil bulk density and compaction degree were lowest and total porosity and macroporosity highest in the plant row. Soil penetration resistance in the plant row, was less than 2 MPa in TC1 and TC2. Soil aggregation and total organic carbon did not differ between the management systems. The root surface and volume were increased in TC1 and TC2, with higher productivity and sugar yield than under NTC. The sugarcane variables did not differ between the managements.

[1]  Z. D. Souza,et al.  Controle de tráfego agrícola e atributos físicos do solo em área cultivada com cana-de-açúcar , 2010 .

[2]  D. Mcgarry,et al.  Controlled traffic farming - From research to adoption in Australia , 2007 .

[3]  B. Wiedenfeld,et al.  Effects of irrigation water salinity and electrostatic water treatment for sugarcane production , 2008 .

[4]  R. Stolf Teoria e teste experimental de fórmulas de transformaçáo dos dados de penetrômetro de impacto em resistência de solo , 1991 .

[5]  A. D. McHugh,et al.  Controlled traffic farming restores soil structure , 2009 .

[6]  C. Medina,et al.  Escarificação de um Latossolo Vermelho na pós-colheita de soqueira de cana-de-açúcar , 2004 .

[7]  L. A. C. Jorge,et al.  Avaliação do sistema radicular da cana-de-açúcar por diferentes métodos , 2003 .

[8]  Ross Kingwell,et al.  The whole-farm benefits of controlled traffic farming: An Australian appraisal , 2011 .

[9]  M. V. Braunack,et al.  Traffic control and tillage strategies for harvesting and planting of sugarcane (Saccharum officinarum) in Australia , 2006 .

[10]  E. Mileva Size distribution of aggregates in micellar solutions , 1993 .

[11]  Peter J. Thorburn,et al.  Growth and function of the sugarcane root system , 2005 .

[12]  M. R. Carter RELATIVE MEASURES OF SOIL BULK DENSITY TO CHARACTERIZE COMPACTION IN TILLAGE STUDIES ON FINE SANDY LOAMS , 1990 .

[13]  J. Meyer,et al.  THE EFFECTS OF SOIL FERTILITY AND NUTRITION ON SUGARCANE QUALITY: A REVIEW , 2001 .

[14]  Z. D. Souza,et al.  Micromorfologia do solo e sua relação com atributos físicos e hídricos , 2006 .

[15]  L. Vettori Métodos de análise de solo. , 1969 .

[16]  G. D. Vermeulen,et al.  Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil , 2009 .

[17]  Z. D. Souza,et al.  Sistemas de colheita e manejo da palhada de cana-de-açúcar , 2005 .

[18]  J. Nieber,et al.  Compaction effect on the gas diffusion coefficient in soils , 1992 .

[19]  Tomaz Caetano Cannavam Ripoli,et al.  Biomassa de cana-de-açúcar: colheita, energia e ambiente , 2004 .

[20]  I. Håkansson,et al.  Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils , 2009 .

[21]  He Jin,et al.  Controlled traffic farming with no tillage for improved fallow water storage and crop yield on the Chinese Loess Plateau , 2009 .

[22]  J. Mielniczuk,et al.  Agregação e estoque de carbono em argissolo submetido a diferentes práticas de manejo agrícola , 2011 .

[23]  Douglas Rodrigo Kaiser,et al.  Modificações em propriedades físicas com a compactação do solo causada pelo tráfego induzido de um trator em plantio direto , 2004 .

[24]  N. Anten,et al.  Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress , 2012 .

[25]  M. F. Guimarães,et al.  Soil bulk density and porosity of homogeneous morphological units identified by the Cropping Profile Method in clayey Oxisols in Brazil , 2003 .

[26]  H. Franco,et al.  Root system distribution of sugar cane as related to nitrogen fertilization, evaluated by two methods: monolith and probes , 2009 .

[27]  P. L. Libardi,et al.  QUALIDADE FÍSICA DE TRÊS SOLOS SOB COLHEITA MECANIZADA DE CANA-DE-AÇÚCAR , 2011 .

[28]  H. Franco,et al.  High soil penetration resistance reduces sugarcane root system development , 2011 .

[29]  Boletim Técnico Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas , 2009 .

[30]  E. S. Mendonça,et al.  Carbono orgânico e estabilidade de agregados de um Latossolo Vermelho sob diferentes manejos , 2005 .

[31]  S. Materechera Tillage and tractor traffic effects on soil compaction in horticultural fields used for peri-urban agriculture in a semi-arid environment of the North West Province, South Africa , 2009 .

[32]  I. A. Alvarez,et al.  Crescimento de raízes de cana crua e queimada em dois ciclos , 2000 .