Systematic structural analysis of a series of anion receptor complexes

A crystallographic systematic study of a series of 6 anion receptor complexes has been performed, with the accurate atomic positions and displacement parameters of the hydrogen atoms for two complexes determined by neutron diffraction studies. The N–H⋯anion hydrogen bonding interaction is shown to be central to the geometry of the urea unit. Contributions of the intermolecular interactions to the packing of the molecule are highlighted by correlation to the Hirshfeld surfaces and their fingerprint plots, with alterations to the position and amount of nitro substitution on the receptor shown to affect the π⋯π stacking motifs observed across the structures.

[1]  Amitava Das,et al.  A density functional study towards substituent effects on anion sensing with urea receptors , 2010, Journal of molecular modeling.

[2]  M. Spackman,et al.  Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals , 1998 .

[3]  M. Spackman,et al.  Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.

[4]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[5]  E. Monzani,et al.  Nature of urea-fluoride interaction: incipient and definitive proton transfer. , 2004, Journal of the American Chemical Society.

[6]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[7]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2010. , 2012, Chemical Society reviews.

[8]  Christoph Janiak,et al.  A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands , 2000 .

[9]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[10]  F. Wang,et al.  Anion complexation and sensing using modified urea and thiourea-based receptors. , 2010, Chemical Society reviews.

[11]  Luigi Fabbrizzi,et al.  Anion recognition by hydrogen bonding: urea-based receptors. , 2010, Chemical Society reviews.

[12]  Margaret C. Etter,et al.  Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas , 1990 .

[13]  L. Reddy,et al.  Crystal Structures of N-Aryl-N′-4-Nitrophenyl Ureas: Molecular Conformation and Weak Interactions Direct the Strong Hydrogen Bond Synthon , 2007 .

[14]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[15]  M. Hynes EQNMR : a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data , 1993 .

[16]  M. Spackman,et al.  Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. , 2007, Chemical communications.

[17]  Hiroki Takahashi,et al.  Low-temperature-induced reversible single-crystal-to-single-crystal phase transition of 3,4-dichloro-2′,4′,6′-triethylbenzophenone , 2010 .

[18]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[19]  H. Nowell,et al.  I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source. , 2012, Journal of synchrotron radiation.

[20]  J. Howard,et al.  Trans-4-(trifluoromethyl) cinnamic acid , 2008 .

[21]  Chick C. Wilson,et al.  SXD – the single-crystal diffractometer at the ISIS spallation neutron source , 2006 .

[22]  Philip A. Gale,et al.  1,3-Diindolylureas: high affinity dihydrogen phosphate receptors. , 2008, Chemical communications.

[23]  Simon J. Coles,et al.  Changing and challenging times for service crystallography , 2012 .