Impact of installation errors of the gear on the kinematic deviation

The primary purpose of the study is to assess of impact of various installation errors on the transmission error of the bevel gear with circular-curved teeth. To achieve that, simulation possibilities were used as a tool accelerating the time of analyses and requiring small financial outlays for the tests. Solid body models of toothed wheels were generated in accordance with Gleason's method, then the virtual installation of toothed wheels took place, and the simulation was conducted in the CAE (computer aided engineering) program environment. Single flank of toothed wheels was simulated for weather conditions and thus for small speed and load. Faulty performance of wheels was not simulated, and friction was not taken into account. As a result of simulation, the transmission error (kinematic deviation) of the bevel gear was obtained for various positions of the pinion in respect of the crown wheel (installation errors). Positions with the smallest and the largest influence on the transmission error were determined.