Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth

[1]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[2]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[3]  Teri A. Crosby,et al.  How to Detect and Handle Outliers , 1993 .

[4]  Raimund Seidel,et al.  The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..

[5]  Anders Krogh,et al.  Learning with ensembles: How overfitting can be useful , 1995, NIPS.

[6]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[7]  G. Ridgeway The State of Boosting ∗ , 1999 .

[8]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[9]  D. Byun Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling system , 1999 .

[10]  Yee Leung,et al.  Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression , 2000 .

[11]  Concentrations and elemental components of PM_(2.5) ,PM_(10) in ambient air in four large chinese cities , 2001 .

[12]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[13]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[14]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[15]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[16]  D. Jacob,et al.  Mapping annual mean ground‐level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States , 2004 .

[17]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[18]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[19]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[20]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[21]  Jun Wang,et al.  Satellite remote sensing of particulate matter and air quality assessment over global cities , 2006 .

[22]  Christiane Belitz Model selection in generalised structured additive regression models , 2007 .

[23]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[24]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[25]  M. McElroy,et al.  Variations of O 3 and CO in summertime at a rural site near Beijing , 2008 .

[26]  Yang Liu,et al.  Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. , 2008, Environmental science & technology.

[27]  Alma Hodzic,et al.  A model inter-comparison study focussing on episodes with elevated PM10 concentrations , 2008 .

[28]  G. Leeuw,et al.  Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands , 2008 .

[29]  S. Christopher,et al.  Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? , 2009, Journal of the Air & Waste Management Association.

[30]  Yang Liu,et al.  Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information , 2009, Environmental health perspectives.

[31]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[32]  M. Jerrett,et al.  A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. , 2009, The Science of the total environment.

[33]  Daniel J. Jacob,et al.  Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. , 2010 .

[34]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[35]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[36]  N. Motallebi,et al.  Spatial and Temporal Characterization of PM2.5 Mass Concentrations in California, 1980–2007 , 2011, Journal of the Air & Waste Management Association.

[37]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[38]  J. Schwartz,et al.  A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations , 2011 .

[39]  J. Schwartz,et al.  Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements , 2011 .

[40]  J. Schwartz,et al.  Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. , 2012, Environmental science & technology.

[41]  Liangfu Chen,et al.  Satellite observation of regional haze pollution over the North China Plain , 2012 .

[42]  Alfred Stein,et al.  Bayesian structured additive regression modeling of epidemic data: application to cholera , 2012, BMC Medical Research Methodology.

[43]  Mark J. Fitch,et al.  Summary and analysis of approaches linking visual range, PM2.5 concentrations, and air quality health impact indices for wildfires , 2013, Journal of the Air & Waste Management Association.

[44]  D. Broday,et al.  Improved retrieval of PM2.5 from satellite data products using non-linear methods. , 2013, Environmental pollution.

[45]  Mark Richards,et al.  A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. , 2013, Atmospheric environment.

[46]  Scott Fruin,et al.  Modeling the concentrations of on-road air pollutants in southern California. , 2013, Environmental science & technology.

[47]  William L. Crosson,et al.  Estimating Ground-Level PM(sub 2.5) Concentrations in the Southeastern United States Using MAIAC AOD Retrievals and a Two-Stage Model , 2014 .

[48]  Emilio Corchado,et al.  A survey of multiple classifier systems as hybrid systems , 2014, Inf. Fusion.

[49]  Effects of near-road and regional air pollution: the challenge of separation , 2014, Thorax.

[50]  Itai Kloog,et al.  Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data , 2014, Journal of Exposure Science and Environmental Epidemiology.

[51]  Tai Hing Lam,et al.  Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents , 2015, Environmental health perspectives.

[52]  Yan-lin Zhang,et al.  Fine particulate matter (PM2.5) in China at a city level , 2015, Scientific Reports.

[53]  X. Fang,et al.  Reconstruction of cropland cover changes in the Shandong Province over the past 300 years , 2015, Scientific Reports.

[54]  Yuqi Bai,et al.  Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. , 2015, Environmental science & technology.

[55]  M. Caruso,et al.  Impact of air quality on lung health: myth or reality? , 2015, Therapeutic advances in chronic disease.

[56]  Alexei Lyapustin,et al.  Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City. , 2015, Environmental science & technology.

[57]  Tong Zhu,et al.  Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008 , 2015 .

[58]  Achim Zeileis,et al.  Structured Additive Regression Models: An R Interface to BayesX , 2015 .

[59]  Hong Huo,et al.  High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010 , 2015 .

[60]  Jorge Mateu,et al.  Spatial and Spatio-Temporal Geostatistical Modeling and Kriging , 2015 .

[61]  Jianxin Tan,et al.  Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice , 2015, The Journal of asthma : official journal of the Association for the Care of Asthma.

[62]  Yang Liu,et al.  Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements , 2016 .

[63]  Zhongmin Zhu,et al.  A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth , 2016 .

[64]  Zhenguo Liu,et al.  Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells , 2016, Journal of cellular and molecular medicine.

[65]  Yujie Wang,et al.  Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. , 2016, Environmental science & technology.

[66]  J. Schwartz,et al.  Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011 , 2016, Journal of Exposure Science and Environmental Epidemiology.

[67]  Yuan Zhou,et al.  A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD , 2016, Remote. Sens..

[68]  J. H. Belle,et al.  Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. , 2017, Environmental science & technology.

[69]  Liang-pei Zhang,et al.  Point-surface fusion of station measurements and satellite observations for mapping PM 2.5 distribution in China: Methods and assessment , 2016, 1607.02976.

[70]  Casey Olives,et al.  Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring , 2016, Environmental health perspectives.

[71]  Lianfa Li,et al.  Spatiotemporal estimation of historical PM 2.5 concentrations using PM 10 , meteorological variables, and spatial effect , 2017 .

[72]  Qingyang Xiao,et al.  Full-coverage high-resolution daily PM 2.5 estimation using MAIAC AOD in the Yangtze River Delta of China , 2017 .

[73]  Xiao-Feng Huang,et al.  Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival , 2017 .

[74]  Qiuhong Tang,et al.  Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model , 2017 .

[75]  M. Brauer,et al.  Transboundary health impacts of transported global air pollution and international trade , 2017, Nature.

[76]  Yu Zhan,et al.  Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm , 2017 .

[77]  Lianfa Li,et al.  Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution. , 2017, Environmental science & technology.

[78]  Yaolin Lin,et al.  A Review of Recent Advances in Research on PM2.5 in China , 2018, International journal of environmental research and public health.