Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth

Ontogenetic information is crucial to understand life histories and represents a true challenge in dinosaurs due to the scarcity of growth series available. Mussaurus patagonicus was a sauropodomorph dinosaur close to the origin of Sauropoda known from hatchling, juvenile and mature specimens, providing a sufficiently complete ontogenetic series to reconstruct general patterns of ontogeny. Here, in order to quantify how body shape and its relationship with locomotor stance (quadruped/biped) changed in ontogeny, hatchling, juvenile (~1 year old) and adult (8+ years old) individuals were studied using digital models. Our results show that Mussaurus rapidly grew from about 60 g at hatching to ~7 kg at one year old, reaching >1000 kg at adulthood. During this time, the body’s centre of mass moved from a position in the mid-thorax to a more caudal position nearer to the pelvis. We infer that these changes of body shape and centre of mass reflect a shift from quadrupedalism to bipedalism occurred early in ontogeny in Mussaurus. Our study indicates that relative development of the tail and neck was more influential in determining the locomotor stance in Sauropodomorpha during ontogeny, challenging previous studies, which have emphasized the influence of hindlimb vs. forelimb lengths on sauropodomorph stance.

[1]  John R Hutchinson,et al.  Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha) , 2017, PeerJ.

[2]  N. Shubin,et al.  7 – HISTORY, ONTOGENY, AND EVOLUTION OF THE ARCHETYPE , 1994 .

[3]  D. Pol,et al.  Skull anatomy of Mussaurus patagonicus (Dinosauria: Sauropodomorpha) from the Late Triassic of Patagonia , 2007 .

[4]  R. E. Heinrich,et al.  Femoral ontogeny and locomotor biomechanics of Dryosaurus lettowvorbecki (Dinosauria, Iguanodontia) , 1993 .

[5]  P. Barrett,et al.  The evolution of ornithischian quadrupedality , 2017, Journal of Iberian Geology.

[6]  R. Reisz,et al.  Embryos of an Early Jurassic Prosauropod Dinosaur and Their Evolutionary Significance , 2005, Science.

[7]  Lee Margetts,et al.  March of the Titans: The Locomotor Capabilities of Sauropod Dinosaurs , 2013, PloS one.

[8]  Paul M. Barrett,et al.  What drove reversions to quadrupedality in ornithischian dinosaurs? Testing hypotheses using centre of mass modelling , 2014, Naturwissenschaften.

[9]  D. Pol,et al.  An early trend towards gigantism in Triassic sauropodomorph dinosaurs , 2018, Nature Ecology & Evolution.

[10]  Matthew F. Bonnan THE EVOLUTION OF MANUS SHAPE IN SAUROPOD DINOSAURS: IMPLICATIONS FOR FUNCTIONAL MORPHOLOGY, FORELIMB ORIENTATION, AND PHYLOGENY , 2003 .

[11]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[12]  John R. Hutchinson,et al.  A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth , 2011, PloS one.

[13]  H. Gunga,et al.  Biology of the sauropod dinosaurs: the evolution of gigantism , 2011, Biological reviews of the Cambridge Philosophical Society.

[14]  W. I. Sellers,et al.  Minimum convex hull mass estimations of complete mounted skeletons , 2012, Biology Letters.

[15]  W. Sellers,et al.  Scaling of Convex Hull Volume to Body Mass in Modern Primates, Non-Primate Mammals and Birds , 2014, PloS one.

[16]  R. Bonett Heterochrony , 2021, Evolutionary Developmental Biology.

[17]  Vivian Allen,et al.  Variation in Center of Mass Estimates for Extant Sauropsids and its Importance for Reconstructing Inertial Properties of Extinct Archosaurs , 2009, Anatomical record.

[18]  Charlotte A. Brassey,et al.  An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates , 2015, Royal Society Open Science.

[19]  D. Pol,et al.  Unusual Endosteally Formed Bone Tissue in a Patagonian Basal Sauropodomorph Dinosaur , 2014, Anatomical record.

[20]  P. Barrett,et al.  Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs , 2012, Proceedings of the Royal Society B: Biological Sciences.

[21]  O. Rauhut,et al.  Early development of the facial region in a non-avian theropod dinosaur , 2005, Proceedings of the Royal Society B: Biological Sciences.

[22]  Paul C. Sereno,et al.  Early Evolution and Higher-Level Phylogeny of Sauropod Dinosaurs , 1998 .

[23]  R. Reisz,et al.  Embryonic Skeletal Anatomy of the Sauropodomorph Dinosaur Massospondylus from the Lower Jurassic of South Africa , 2010 .

[24]  Ornithischian Dinosaur,et al.  ON THE ORNITHISCHIAN DINOSAUR IGUANODON BERNISSARTENSIS FROM THE LOWER CRETACEOUS OF BERNISSART ( BELGIUM ) , 2013 .

[25]  K. Bates,et al.  Downsizing a giant: re-evaluating Dreadnoughtus body mass , 2015, Biology Letters.

[26]  A. Russell,et al.  Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods , 2018, PeerJ.

[27]  J. Bonaparte,et al.  EL HALLAZGO DEL PRIMER NIDO DE DINOSAURIOS TRIASICOS, (SAURISCHIA, PROSAUROPODA), TRIASICO SUPERIOR DE PATAGONIA, ARGENTINA , 1979 .

[28]  Charlotte A. Brassey,et al.  Body mass estimation in paleontology: a review of volumetric techniques , 2016 .

[29]  D. Dilkes,et al.  An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae) , 2001 .

[30]  M. Norell,et al.  The origin and early radiation of dinosaurs , 2010 .

[31]  L. Salgado,et al.  Embryonic Skulls of Titanosaur Sauropod Dinosaurs , 2001, Science.

[32]  John R. Hutchinson,et al.  Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs , 2013, Nature.

[33]  M. Emery-Wetherell,et al.  A new early occurrence of Cervidae in North America from the Miocene-Pliocene Ellensburg Formation in Washington, USA , 2020 .

[34]  L. Chiappe,et al.  The variability of inner ear orientation in saurischian dinosaurs: testing the use of semicircular canals as a reference system for comparative anatomy , 2013, PeerJ.

[35]  Matthew F. Bonnan,et al.  Forearm Posture and Mobility in Quadrupedal Dinosaurs , 2013, PloS one.

[36]  J. Hutchinson,et al.  Reconstruction of the musculoskeletal system in an extinct lion , 2017 .

[37]  L. Salgado The macroevolution of the Diplodocimorpha (Dinosauria; Sauropoda): a developmental model , 1999 .

[38]  M. Carrano,et al.  Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology , 1998, Paleobiology.

[39]  Kenneth J. McNamara,et al.  Heterochrony: The Evolution of Ontogeny , 1991 .

[40]  William I. Sellers,et al.  Temporal and phylogenetic evolution of the sauropod dinosaur body plan , 2016, Royal Society Open Science.

[41]  P. Currie,et al.  The Tail of Tyrannosaurus: Reassessing the Size and Locomotive Importance of the M. caudofemoralis in Non‐Avian Theropods , 2011, Anatomical record.

[42]  J. Choiniere,et al.  A Giant Dinosaur from the Earliest Jurassic of South Africa and the Transition to Quadrupedality in Early Sauropodomorphs , 2018, Current Biology.

[43]  D. Pol,et al.  Osteohistological insight into the early stages of growth in Mussaurus patagonicus (Dinosauria, Sauropodomorpha) , 2014 .

[44]  Jeffrey A. Wilson,et al.  The Sauropods: Evolution and Paleobiology , 2005 .

[45]  M. Benton,et al.  Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis , 2013, Nature Communications.

[46]  D. Pol,et al.  Postcranial Anatomy and Phylogenetic Relationships of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) , 2013 .

[47]  Quadrupedal Dinosaurs did not Evolve Fully Pronated Forearms: New Evidence from the Ulna , 2014 .

[48]  Michael P Taylor,et al.  Head and Neck Posture in Sauropod Dinosaurs Inferred from Extant Animals , 2009 .

[49]  A. Yates,et al.  A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism , 2010, Proceedings of the Royal Society B: Biological Sciences.

[50]  J. Choiniere,et al.  Ontogeny of the Massospondylus labyrinth: implications for locomotory shifts in a basal sauropodomorph dinosaur , 2018, Palaeontology.