Polarization-insensitive and wide-angle MXene-TiN-based wideband absorber operating in the visible and near-infrared regime

[1]  Guange Wang,et al.  Visible and Near-Infrared Broadband Absorber Based on Ti3C2Tx MXene-Wu , 2022, Nanomaterials.

[2]  Zhimin Liu,et al.  Enhanced absorption for MXene/Au-based metamaterials , 2021 .

[3]  Zhimin Liu,et al.  Dual band visible metamaterial absorbers based on four identical ring patches , 2020 .

[4]  Y. P. Lee,et al.  Recent progress in perfect absorbers by utilizing metamaterials , 2020, Journal of Electromagnetic Waves and Applications.

[5]  Shobhit K. Patel,et al.  Broadband metamaterial-based near-infrared absorber using an array of uniformly placed gold resonators , 2020 .

[6]  M. Qiu,et al.  Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures , 2020 .

[7]  N. Engheta,et al.  Metamaterials: Two Decades Past and Into Their Electromagnetics Future and Beyond , 2020, IEEE Transactions on Antennas and Propagation.

[8]  N. Hoa,et al.  Numerical Study of an Efficient Broadband Metamaterial Absorber in Visible Light Region , 2019, IEEE Photonics Journal.

[9]  Yihang Chen,et al.  Dual-Band Metamaterial Absorbers in the Visible and Near-Infrared Regions , 2019, The Journal of Physical Chemistry C.

[10]  Y. Nishijima,et al.  Tailoring Metal and Insulator Contributions in Plasmonic Perfect Absorber Metasurfaces , 2018, ACS Applied Nano Materials.

[11]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[12]  Vladimir M. Shalaev,et al.  Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) , 2018 .

[13]  Honglin Yu,et al.  Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials , 2017 .

[14]  Ben-Xin Wang,et al.  Single Metamaterial Resonator Having Five-Band Terahertz Near-Perfect Absorption , 2017, IEEE Photonics Technology Letters.

[15]  Ben-Xin Wang,et al.  Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications , 2017 .

[16]  M. Naguib Two-Dimensional Transition-Metal Carbides and Carbonitrides , 2017 .

[17]  Sergey I. Bozhevolnyi,et al.  Broadband near-infrared metamaterial absorbers utilizing highly lossy metals , 2016, Scientific Reports.

[18]  Y. Gogotsi,et al.  One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS , 2016, Scientific Reports.

[19]  Ji Zhou,et al.  Dual band metamaterial perfect absorber based on Mie resonances , 2016 .

[20]  Cumali Sabah,et al.  Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications , 2016 .

[21]  Sungjoon Lim,et al.  Incident Angle- and Polarization-Insensitive Metamaterial Absorber using Circular Sectors , 2016, Scientific Reports.

[22]  Jie Ji,et al.  Dual-band tunable perfect metamaterial absorber in the THz range. , 2016, Optics express.

[23]  Bong Jae Lee,et al.  Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum. , 2016, Optics express.

[24]  M. Aono,et al.  Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon‐Enhanced Infrared Spectroscopy , 2015 .

[25]  Yan Wang,et al.  Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity , 2015, Nanotechnology.

[26]  C. Tablero Microscopic Analysis and Applications of the Cu(Sb,Bi)S2 High Optical Absorption , 2015 .

[27]  Tobias A. F. König,et al.  Tailoring the Plasmonic Modes of a Grating‐Nanocube Assembly to Achieve Broadband Absorption in the Visible Spectrum , 2014 .

[28]  Zhongyang Li,et al.  Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films , 2014, 1410.7792.

[29]  Koray Aydin,et al.  Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. , 2014, ACS nano.

[30]  Z. Ren,et al.  A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes , 2014 .

[31]  P. Moreau,et al.  Enhanced and tunable surface plasmons in two-dimensional Ti 3 C 2 stacks: Electronic structure versus boundary effects , 2014 .

[32]  Lei Zhang,et al.  Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies , 2014, Scientific Reports.

[33]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[34]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[35]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[36]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[37]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[38]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[39]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[40]  Fu Chen,et al.  Dual-Band and High-Efficiency Circular Polarization Convertor Based on Anisotropic Metamaterial , 2020, IEEE Access.