Efficient Quantum Tensor Product Expanders and k-Designs
暂无分享,去创建一个
[1] A. Harrow,et al. Random Quantum Circuits are Approximate 2-designs , 2008, 0802.1919.
[2] Andris Ambainis,et al. Nonmalleable encryption of quantum information , 2008, 0808.0353.
[3] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[4] R. A. Low. Large deviation bounds for k-designs , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Michael W. Mahoney,et al. Simple permutations mix even better , 2008 .
[6] Jaikumar Radhakrishnan,et al. Random Measurement Bases, Quantum State Distinction and Applications to the Hidden Subgroup Problem , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).
[7] Andris Ambainis,et al. Quantum t-designs: t-wise Independence in the Quantum World , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).
[8] Jean Bourgain,et al. New results on expanders , 2006 .
[9] R. Goodman,et al. Representations and Invariants of the Classical Groups , 1998 .
[10] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[11] A. Winter,et al. Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.
[12] Alex Brodsky,et al. Simple permutations mix even better , 2008, Random Struct. Algorithms.
[13] Aram Wettroth Harrow,et al. Quantum expanders from any classical Cayley graph expander , 2007, Quantum Inf. Comput..
[14] Martin Kassabov. Symmetric Groups and Expanders , 2005 .
[15] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[16] Amnon Ta-Shma,et al. Quantum expanders and the quantum entropy difference problem , 2007 .
[17] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[18] Andris Ambainis,et al. Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.
[19] Matthew B. Hastings,et al. Classical and quantum tensor product expanders , 2008, Quantum Inf. Comput..
[20] Jens Eisert,et al. Quantum margulis expanders , 2007, Quantum Inf. Comput..