On skew information

In this paper, we show that skew information introduced by Wigner and Yanase, which is a natural informational extension of variance for pure states, can be interpreted as a measure of quantum uncertainty. By virtue of skew information, we establish a new uncertainty relation in the spirit of Schrodinger, which incorporates both incompatibility (encoded in the commutator) and correlations (encoded in a new correlation measure related to skew information) between observables, and moreover is stronger than the conventional ones.

[1]  Denes Petz,et al.  Covariance and Fisher information in quantum mechanics , 2001, quant-ph/0106125.

[2]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[3]  D. Petz,et al.  Non-Commutative Extension of Information Geometry II , 1997 .

[4]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[5]  Dénes Petz,et al.  On the Riemannian metric of α-entropies of density matrices , 1996 .

[6]  V. Sharma,et al.  Entropy and channel capacity in the regenerative setup with applications to Markov channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[7]  Paul H. Siegel,et al.  On the achievable information rates of finite state ISI channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[8]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Petz,et al.  Geometries of quantum states , 1996 .

[10]  M. Grasselli DUALITY, MONOTONICITY AND THE WIGNER YANASE DYSON METRICS , 2002, math-ph/0212022.

[11]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[12]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[13]  David Tse,et al.  Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity , 1999, IEEE Trans. Inf. Theory.

[14]  A. Connes,et al.  Homogeneity of the state space of factors of type III1 , 1978 .

[15]  Paolo Gibilisco,et al.  A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .

[16]  T. Isola,et al.  Wigner–Yanase information on quantum state space: The geometric approach , 2003 .

[17]  Sekhar Tatikonda,et al.  Delayed feedback capacity of finite-state machine channels: upper bounds on the feedforward capacity , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[18]  Xiao Ma,et al.  Binary intersymbol interference channels: Gallager codes, density evolution, and code performance bounds , 2003, IEEE Transactions on Information Theory.

[19]  H. Hasegawa Non-Commutative Extension of the Information Geometry , 1995 .

[20]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[21]  A. Jenčová Flat connections and Wigner-Yanase-Dyson metrics , 2003, math-ph/0307057.

[22]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[23]  C. Helstrom Quantum detection and estimation theory , 1969 .

[24]  S. Luo Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.

[25]  H. Vincent Poor,et al.  Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.

[26]  E. Schrodinger,et al.  About Heisenberg Uncertainty Relation , 1930 .

[27]  H. Hasegawa DUAL GEOMETRY OF THE WIGNER–YANASE–DYSON INFORMATION CONTENT , 2003 .

[28]  N. N. Chent︠s︡ov Statistical decision rules and optimal inference , 1982 .

[29]  L. Campbell An extended Čencov characterization of the information metric , 1986 .

[30]  H. Hasegawa EXPONENTIAL AND MIXTURE FAMILIES IN QUANTUM STATISTICS : dual structure and unbiased parameter estimation(Analysis of Operators on Gaussian Space and Quantum Probability Theory) , 1995 .

[31]  H. Cramér Mathematical methods of statistics , 1947 .

[32]  D. Petz Monotone metrics on matrix spaces , 1996 .

[33]  P. Gibilisco,et al.  On the characterisation of paired monotone metrics , 2003, math/0303059.

[34]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[35]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Anna Jencova Geodesic distances on density matrices , 2004 .