On skew information
暂无分享,去创建一个
[1] Denes Petz,et al. Covariance and Fisher information in quantum mechanics , 2001, quant-ph/0106125.
[2] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[3] D. Petz,et al. Non-Commutative Extension of Information Geometry II , 1997 .
[4] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[5] Dénes Petz,et al. On the Riemannian metric of α-entropies of density matrices , 1996 .
[6] V. Sharma,et al. Entropy and channel capacity in the regenerative setup with applications to Markov channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[7] Paul H. Siegel,et al. On the achievable information rates of finite state ISI channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).
[8] E. Wigner,et al. INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[9] D. Petz,et al. Geometries of quantum states , 1996 .
[10] M. Grasselli. DUALITY, MONOTONICITY AND THE WIGNER YANASE DYSON METRICS , 2002, math-ph/0212022.
[11] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[12] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[13] David Tse,et al. Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity , 1999, IEEE Trans. Inf. Theory.
[14] A. Connes,et al. Homogeneity of the state space of factors of type III1 , 1978 .
[15] Paolo Gibilisco,et al. A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .
[16] T. Isola,et al. Wigner–Yanase information on quantum state space: The geometric approach , 2003 .
[17] Sekhar Tatikonda,et al. Delayed feedback capacity of finite-state machine channels: upper bounds on the feedforward capacity , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[18] Xiao Ma,et al. Binary intersymbol interference channels: Gallager codes, density evolution, and code performance bounds , 2003, IEEE Transactions on Information Theory.
[19] H. Hasegawa. Non-Commutative Extension of the Information Geometry , 1995 .
[20] Shlomo Shamai,et al. Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.
[21] A. Jenčová. Flat connections and Wigner-Yanase-Dyson metrics , 2003, math-ph/0307057.
[22] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[23] C. Helstrom. Quantum detection and estimation theory , 1969 .
[24] S. Luo. Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.
[25] H. Vincent Poor,et al. Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.
[26] E. Schrodinger,et al. About Heisenberg Uncertainty Relation , 1930 .
[27] H. Hasegawa. DUAL GEOMETRY OF THE WIGNER–YANASE–DYSON INFORMATION CONTENT , 2003 .
[28] N. N. Chent︠s︡ov. Statistical decision rules and optimal inference , 1982 .
[29] L. Campbell. An extended Čencov characterization of the information metric , 1986 .
[30] H. Hasegawa. EXPONENTIAL AND MIXTURE FAMILIES IN QUANTUM STATISTICS : dual structure and unbiased parameter estimation(Analysis of Operators on Gaussian Space and Quantum Probability Theory) , 1995 .
[31] H. Cramér. Mathematical methods of statistics , 1947 .
[32] D. Petz. Monotone metrics on matrix spaces , 1996 .
[33] P. Gibilisco,et al. On the characterisation of paired monotone metrics , 2003, math/0303059.
[34] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[35] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] Anna Jencova. Geodesic distances on density matrices , 2004 .