Mechanochromic Photonic Gels

Polymer gels are remarkable materials with physical structures that can adapt significantly and quite rapidly with changes in the local environment, such as temperature, light intensity, electrochemistry, and mechanical force. An interesting phenomenon observed in certain polymer gel systems is mechanochromism - a change in color due to a mechanical deformation. Mechanochromic photonic gels are periodically structured gels engineered with a photonic stopband that can be tuned by mechanical forces to reflect specific colors. These materials have potential as mechanochromic sensors because both the mechanical and optical properties are highly tailorable via incorporation of diluents, solvents, nanoparticles, or polymers, or the application of stimuli such as temperature, pH, or electric or strain fields. Recent advances in photonic gels that display strain-dependent optical properties are discussed. In particular, this discussion focuses primarily on polymer-based photonic gels that are directly or indirectly fabricated via self-assembly, as these materials are promising soft material platforms for scalable mechanochromic sensors.

[1]  Jongseung Yoon,et al.  Highly Oriented Thin‐Film Microdomain Patterns of Ultrahigh Molecular Weight Block Copolymers via Directional Solidification of a Solvent , 2006 .

[2]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[3]  S. Foulger,et al.  Pressure tuning the optical transmission properties of photonic band gap composites , 2007 .

[4]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  C. Stafford,et al.  Measuring the Modulus of Soft Polymer Networks via a Buckling-Based Metrology , 2006 .

[6]  D. Kaelble,et al.  Theory and analysis of peel adhesion: Rate-temperature dependence of viscoelastic interlayers , 1964 .

[7]  Alfred J. Crosby,et al.  Fabricating Microlens Arrays by Surface Wrinkling , 2006 .

[8]  Walter J. Schrenk,et al.  Physical optics of iridescent multilayered plastic films , 1969 .

[9]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[10]  C. Stafford,et al.  Diffusion‐Controlled, Self‐Organized Growth of Symmetric Wrinkling Patterns , 2009 .

[11]  Stephen H. Foulger,et al.  Color characteristics of mechanochromic photonic bandgap composites , 2009 .

[12]  Zhigang Suo,et al.  Stress-relaxation behavior in gels with ionic and covalent crosslinks. , 2010, Journal of applied physics.

[13]  E. Thomas,et al.  Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems , 1996 .

[14]  Augustine Urbas,et al.  Tunable Block Copolymer/Homopolymer Photonic Crystals , 2000 .

[15]  Guangzhao Zhang,et al.  Electrically tunable block copolymer photonic crystals with a full color display , 2009 .

[16]  K. Winey,et al.  Evolution of kink bands and tilt boundaries in block copolymers at large shear strains , 2000 .

[17]  G. Whitesides,et al.  Indentation of polydimethylsiloxane submerged in organic solvents , 2011 .

[18]  Liming Peng,et al.  Solvent-assisted poly(vinyl alcohol) gelated crystalline colloidal array photonic crystals , 2011 .

[19]  C. A. Stover,et al.  Giant birefringent optics in multilayer polymer mirrors , 2000, Science.

[20]  E. Thomas,et al.  Block Copolymer Photonic Gel for Mechanochromic Sensing , 2011, Advanced materials.

[21]  Zhao-Qing Zhang,et al.  Fragility of photonic band gaps in inverse-opal photonic crystals , 2000 .

[22]  Riccardo Sapienza,et al.  Photonic Glass: A Novel Random Material for Light , 2007 .

[23]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[24]  Richard A. Vaia,et al.  Assembly of Wiseana Iridovirus: Viruses for Colloidal Photonic Crystals , 2006 .

[25]  J. Joannopoulos,et al.  Block copolymers as photonic bandgap materials , 1999 .

[26]  J. Ballato,et al.  Mechanochromic Response of Poly(ethylene glycol) Methacrylate Hydrogel Encapsulated Crystalline Colloidal Arrays , 2001 .

[27]  Peter M. Johnson,et al.  Spherical indentation testing of poroelastic relaxations in thin hydrogel layers , 2012 .

[28]  B. Viel,et al.  Reversible Deformation of Opal Elastomers , 2007 .

[29]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[30]  Salvatore Torquato,et al.  Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.

[31]  Jian Ping Gong,et al.  Unidirectional Alignment of Lamellar Bilayer in Hydrogel: One‐Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color , 2010, Advanced materials.

[32]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[33]  R. Zentel,et al.  Liquid crystalline elastomers based on liquid crystalline side group, main chain and combined polymers , 1986 .

[34]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  Jianyin Wang,et al.  Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. , 2011, Journal of colloid and interface science.

[36]  Photonic band structure of highly deformable self-assembling systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  E. Thomas,et al.  Metallodielectric Photonic Crystals Based on Diblock Copolymers , 2001 .

[38]  Eric Baer,et al.  Polymeric One‐Dimensional Photonic Crystals by Continuous Coextrusion , 2007 .

[39]  John Ballato,et al.  Photonic Bandgap Composites , 2001 .

[40]  Zhigang Suo,et al.  Using indentation to characterize the poroelasticity of gels , 2010 .

[41]  W. Ford,et al.  Diffraction of Visible Light by Ordered Monodisperse Silica−Poly(methyl acrylate) Composite Films , 1996 .

[42]  R. Sutherland,et al.  Mechanical tuning of holographic polymer-dispersed liquid crystal reflection gratings , 2004 .

[43]  Untwisting of a cholesteric elastomer by a mechanical field , 2000, Physical review letters.

[44]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[45]  Peter Palffy-Muhoray,et al.  Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers , 2001 .

[46]  G. Ozin,et al.  Vapor swellable colloidal photonic crystals with pressure tunability , 2005 .

[47]  Daihyun Kim,et al.  Quasi‐Amorphous Colloidal Structures for Electrically Tunable Full‐Color Photonic Pixels with Angle‐Independency , 2010, Advanced materials.

[48]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[49]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[50]  Ming Lin,et al.  Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids , 2002, Analytical and bioanalytical chemistry.

[51]  Edwin L. Thomas,et al.  Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic Memory Films , 2010 .

[52]  O. Mykhaylyk,et al.  Direct Imaging of the Orientational Dynamics of Block Copolymer Lamellar Phase Subjected to Shear Flow , 2012 .

[53]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[54]  Michael Rubinstein,et al.  Network Modulus and Superelasticity , 1994 .

[55]  E. Thomas,et al.  Orientational Switching of Mesogens and Microdomains in Hydrogen‐Bonded Side‐Chain Liquid‐Crystalline Block Copolymers Using AC Electric Fields , 2004 .

[56]  Yoel Fink,et al.  Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions. , 2010, Journal of neurosurgery.

[57]  Z. Suo,et al.  Poroelastic relaxation indentation of thin layers of gels , 2011 .

[58]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[59]  Daihyun Kim,et al.  Electrically tunable hysteretic photonic gels for nonvolatile display pixels. , 2011, Angewandte Chemie.

[60]  Edwin L. Thomas,et al.  Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels , 2009 .

[61]  Hanako Asai,et al.  SANS Studies on Tetra-PEG Gel under Uniaxial Deformation , 2011 .

[62]  John Ballato,et al.  Photonic Crystal Composites with Reversible High‐Frequency Stop Band Shifts , 2003 .

[63]  Paras N. Prasad,et al.  Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal , 2006 .

[64]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[65]  S. Hell,et al.  Block copolymer nanostructures mapped by far-field optics. , 2009, Nano letters.

[66]  E. Thomas,et al.  Temperature‐Dependent Photonic Bandgap in a Self‐Assembled Hydrogen‐Bonded Liquid‐Crystalline Diblock Copolymer , 2002 .

[67]  S. Hell,et al.  Flexible microdomain specific staining of block copolymers for 3D optical nanoscopy. , 2011 .

[68]  M. Mitov,et al.  Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps , 2004, The European physical journal. E, Soft matter.

[69]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[70]  Di Zhang,et al.  Tunable Photonic Polyelectrolyte Colorimetric Sensing for Anions, Cations and Zwitterions , 2010, Advanced materials.

[71]  S. Asher,et al.  Fast responsive crystalline colloidal array photonic crystal glucose sensors. , 2006, Analytical chemistry.

[72]  M. Ibanescu,et al.  An All-Dielectric Coaxial Waveguide. , 2000, Science.

[73]  M. C. Gonçalves,et al.  Flexible photonic crystals for strain sensing , 2011 .

[74]  D. Morse,et al.  Shear-induced lamellar rotation observed in a diblock copolymer by in situ small-angle X-ray scattering , 1999 .

[75]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[76]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[77]  A. Crosby,et al.  Spontaneous formation of stable aligned wrinkling patterns. , 2006, Soft matter.

[78]  P. Jiang,et al.  Dynamic Tuning of Photoluminescent Dyes in Crystalline Colloidal Arrays , 2005 .

[79]  Stephen H. Foulger,et al.  Dynamic Tuning of Organic Lasers with Colloidal Crystals , 2006 .

[80]  T. Lodge,et al.  Phase Behavior of a Block Copolymer in Solvents of Varying Selectivity , 2000 .

[81]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[82]  Yongan Xu,et al.  Color changing photonic crystals detect blast exposure , 2011, NeuroImage.

[83]  J. Aizenberg,et al.  Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers , 2013, Advanced materials.

[84]  J. Mays,et al.  Solvent and temperature influences on polystyrene unperturbed dimensions , 1985 .

[85]  Gen Kamita,et al.  Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting , 2011 .

[86]  Y. Cohen,et al.  Deformation of Oriented Lamellar Block Copolymer Films , 2000 .

[87]  Eric Baer,et al.  Novel structures by microlayer coextrusion-talc-filled PP, PC/SAN, and HDPE/LLDPE , 1997 .

[88]  Lien-Wen Chen,et al.  Photonic defect modes of cholesteric liquid crystal with spatially varying pitch , 2005 .