The best Sobolev trace constant in a domain with oscillating boundary

Abstract In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W 1 , p ( Ω ) ↪ L q ( ∂ Ω ) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations.

[1]  The best Sobolev trace constant in domains with holes for critical or subcritical exponents , 2007, The ANZIAM Journal.

[2]  P. Cherrier Problèmes de Neumann non linéaires sur les variétés riemanniennes , 1984 .

[3]  Umberto De Maio,et al.  Asymptotic Approximation of the Solution of the Laplace Equation in a Domain with Highly Oscillating Boundary , 2004, SIAM J. Math. Anal..

[4]  Julián Fernández Bonder,et al.  ASYMPTOTIC BEHAVIOR OF THE BEST SOBOLEV TRACE CONSTANT IN EXPANDING AND CONTRACTING DOMAINS , 2002 .

[5]  J. Rossi,et al.  A convex-concave problem with a nonlinear boundary condition , 2004 .

[6]  Dominique Blanchard,et al.  Homogenization of a monotone problem in a domain with oscillating boundary , 1999 .

[7]  Best constants in Sobolev trace inequalities , 2003 .

[8]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[9]  E. Cherkaeva,et al.  OPTIMAL DESIGN FOR UNCERTAIN LOADING CONDITION , 1999 .

[10]  C. Atkinson,et al.  Some boundary value problems for the Bingham model , 1992 .

[11]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[12]  Antonio Gaudiello Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary , 1994 .

[13]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique (suite et fin) , 1902 .

[14]  Julián Fernández Bonder,et al.  On the Existence of Extremals for the Sobolev Trace Embedding Theorem with Critical Exponent , 2005 .

[15]  Avner Friedman,et al.  The Boundary-value Problem in Domains with Very Rapidly Oscillating Boundary☆ , 1999 .

[16]  Julián Fernández Bonder,et al.  A Nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding , 2002 .

[17]  Avner Friedman,et al.  A boundary value problem for the poisson equation with multi-scale oscillating Boundary , 1997 .

[18]  Julio D. Rossi,et al.  Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition , 2002 .

[19]  Julián Fernández Bonder,et al.  Symmetry properties for the extremals of the Sobolev trace embedding , 2004 .

[20]  L. Tello,et al.  S-Shaped Bifurcation Branch in a Quasilinear Multivalued Model Arising in Climatology , 1998 .

[21]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .