Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells.

[1]  K. Eggan,et al.  Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. , 2008, Cell stem cell.

[2]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[3]  H. Paulson,et al.  SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. , 2008, The Journal of clinical investigation.

[4]  J. E. Kranz,et al.  Design, power, and interpretation of studies in the standard murine model of ALS , 2008, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[5]  D. Cleveland,et al.  Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease , 2007, Nature Neuroscience.

[6]  H. Paulson,et al.  Redox modifier genes in amyotrophic lateral sclerosis in mice. , 2007, The Journal of clinical investigation.

[7]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[8]  Kevin Eggan,et al.  Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model , 2007, Nature Neuroscience.

[9]  A. Dibernardo,et al.  Translating preclinical insights into effective human trials in ALS. , 2006, Biochimica et biophysica acta.

[10]  P. Shaw,et al.  Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. , 2006, Biochimica et biophysica acta.

[11]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[12]  S. Przedborski,et al.  The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice , 2006, Proceedings of the National Academy of Sciences.

[13]  L. Ungar,et al.  Identification of potential CSF biomarkers in ALS , 2006, Neurology.

[14]  S. Hirai,et al.  Genetic analysis of the cystatin C gene in familial and sporadic ALS patients , 2006, Brain Research.

[15]  F. Gage,et al.  Development of functional human embryonic stem cell-derived neurons in mouse brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Robert A Pearce,et al.  Specification of motoneurons from human embryonic stem cells , 2005, Nature Biotechnology.

[17]  L. Barbeito,et al.  A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis , 2004, Brain Research Reviews.

[18]  F. Gage,et al.  Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Robert G. Miller,et al.  ALS trial design: expectation and reality , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[20]  F. Fan,et al.  Redox regulation of glial inflammatory response to lipopolysaccharide and interferonγ , 2004, Journal of neuroscience research.

[21]  Samuel L. Pfaff,et al.  Analysis of embryonic motoneuron gene regulation: derepression of general activators function in concert with enhancer factors , 2004, Development.

[22]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[23]  Philippe Taupin,et al.  FGF-2-Responsive Neural Stem Cell Proliferation Requires CCg, a Novel Autocrine/Paracrine Cofactor , 2000, Neuron.

[24]  S. Przedborski,et al.  Inducible Nitric Oxide Synthase Up‐Regulation in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1999, Journal of neurochemistry.

[25]  A. Doble The pharmacology and mechanism of action of riluzole , 1996, Neurology.

[26]  C. Henderson,et al.  Motoneuron survival factors: Biological roles and therapeutic potential , 1993, Neuromuscular Disorders.

[27]  S. Hirai,et al.  Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum , 1993, Neuroscience Letters.

[28]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[29]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[30]  A. Sik,et al.  Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis , 2006, Nature Neuroscience.

[31]  J. Anneser Molecular basis for treatment in motor neurone disease , 2000, Neurological Sciences.

[32]  B. Pettmann,et al.  Cardiotrophin‐1 requires LIFRβ to promote survival of mouse motoneurons purified by a novel technique , 1999, Journal of neuroscience research.

[33]  J. R. Lancaster,et al.  Quantitation of nitrate and nitrite in extracellular fluids. , 1996, Methods in enzymology.