Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution.

Biotin modified polycationic polymers are capable of penetrating the Au overlayer of poly(N-isopropylacrylamide)-co-acrylic acid microgel-based etalons. Once penetrated, the polycations crosslink the polyanionic microgels, causing them to collapse, resulting in a concomitant blue shift of the spectral peaks in the reflectance spectrum. We show that the magnitude of the blue shift depends on the concentration of the biotinylated polycation solution exposed to the etalon. This behavior is subsequently used for biosensing applications.

[1]  R. Haag,et al.  Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells. , 2011, Macromolecular bioscience.

[2]  Jan Feijen,et al.  Thermosensitive Interpenetrating Polymer Networks: Synthesis, Characterization, and Macromolecular Release , 1994 .

[3]  Anna C. Balazs,et al.  Modeling autonomously oscillating chemo-responsive gels , 2010 .

[4]  M. Serpe,et al.  Glucose sensitive poly (N-isopropylacrylamide) microgel based etalons , 2012, Analytical and Bioanalytical Chemistry.

[5]  J. Ding,et al.  The use of microgel iron oxide nanoparticles in studies of magnetic resonance relaxation and endothelial progenitor cell labelling. , 2010, Biomaterials.

[6]  Michael J. Serpe,et al.  Color Tunable Poly (N‐Isopropylacrylamide)‐co‐Acrylic Acid Microgel–Au Hybrid Assemblies , 2011 .

[7]  Nicholas A. Peppas,et al.  Synthesis and Characterization of Thermo- and Chemomechanically Responsive Poly(N-isopropylacrylamide-co-methacrylic acid) Hydrogels , 1995 .

[8]  Teruo Okano,et al.  Poly (N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. , 2012, Colloids and surfaces. B, Biointerfaces.

[9]  Helmuth Möhwald,et al.  Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules. , 2009, Small.

[10]  R. Gemeinhart,et al.  Matrix metalloprotease triggered delivery of cancer chemotherapeutics from hydrogel matrixes. , 2005, Bioconjugate chemistry.

[11]  K. Akiyoshi,et al.  Dual Stimuli-Responsive Nanogels by Self-Assembly of Polysaccharides Lightly Grafted with Thiol-Terminated Poly(N-isopropylacrylamide) Chains , 2008 .

[12]  H. Ouyang,et al.  Voltage-controlled flow regulating in nanofluidic channels with charged polymer brushes , 2010 .

[13]  Kyle N. Plunkett,et al.  Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. , 2005, Biomacromolecules.

[14]  M. Serpe,et al.  Reflection Order Selectivity of Color‐Tunable Poly(N‐isopropylacrylamide) Microgel Based Etalons , 2011, Advanced materials.

[15]  Andra Dedinaite,et al.  Friction in aqueous media tuned by temperature-responsive polymer layers , 2010 .

[16]  P. Yager,et al.  Point-of-care diagnostics for global health. , 2008, Annual review of biomedical engineering.

[17]  T. Chard,et al.  DIPSTICK METHOD FOR HUMAN CHORIONIC GONADOTROPIN SUITABLE FOR EMERGENCY USE ON WHOLE BLOOD AND OTHER FLUIDS , 1985, The Lancet.

[18]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[19]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[20]  Jongseong Kim,et al.  Bioresponsive hydrogel microlenses. , 2005, Journal of the American Chemical Society.

[21]  L. Andrew Lyon,et al.  Design of Multiresponsive Hydrogel Particles and Assemblies , 2010 .

[22]  W. Richtering,et al.  Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes , 2011 .

[23]  Toyoichi Tanaka,et al.  Phase transition in polymer gels induced by visible light , 1990, Nature.

[24]  Anjal C. Sharma,et al.  A general photonic crystal sensing motif: creatinine in bodily fluids. , 2004, Journal of the American Chemical Society.

[25]  M. Carter,et al.  A "paint-on" protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. , 2011, ACS applied materials & interfaces.

[26]  Igor K Lednev,et al.  High ionic strength glucose-sensing photonic crystal. , 2003, Analytical chemistry.

[27]  R. Pelton,et al.  Highly pH and temperature responsive microgels functionalized with vinylacetic acid , 2004 .

[28]  Robert Langer,et al.  Smart Biomaterials , 2004, Science.

[29]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[30]  Bradley D Olsen,et al.  Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers. , 2012, Biomacromolecules.

[31]  Chi Wu,et al.  Laser Light Scattering Study of the Phase Transition of Poly(N-isopropylacrylamide) in Water. 1. Single Chain , 1995 .

[32]  P. Fauchet,et al.  Identification of Gram negative bacteria using nanoscale silicon microcavities. , 2001, Journal of the American Chemical Society.

[33]  Jongseong Kim,et al.  Hydrogel microparticles as dynamically tunable microlenses. , 2004, Journal of the American Chemical Society.

[34]  Jongseong Kim,et al.  Label-free biosensing with hydrogel microlenses. , 2006, Angewandte Chemie.

[35]  Lisa M. Bonanno,et al.  Integration of a Chemical‐Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual Colorimetric Readout , 2010, Advanced functional materials.

[36]  Y. Bae,et al.  Electrically credible polymer gel for controlled release of drugs , 1991, Nature.