The azimuthal currents in the ion-driven magnetic nozzle

[1]  Hai-bin Tang,et al.  Compositions and distributions of the azimuthal currents in the magnetic nozzle , 2021, Plasma Sources Science and Technology.

[2]  Yong Cao,et al.  Kinetic insights into thrust generation and electron transport in a magnetic nozzle , 2021 .

[3]  Hai-bin Tang,et al.  Application of the view factor model on the particle-in-cell and Monte Carlo collision code. , 2020, Physical review. E.

[4]  Hai-bin Tang,et al.  Electric potential barriers in the magnetic nozzle. , 2020, Physical review. E.

[5]  Hai-bin Tang,et al.  The effects of numerical acceleration techniques on PIC-MCC simulations of ion thrusters , 2020 .

[6]  E. Ahedo,et al.  Plasma beam characterization along the magnetic nozzle of an ECR thruster , 2019, Plasma Sources Science and Technology.

[7]  Kazunori Takahashi Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles , 2019, Reviews of Modern Plasma Physics.

[8]  M. Merino,et al.  On electron boundary conditions in PIC plasma thruster plume simulations , 2019, Plasma Sources Science and Technology.

[9]  Hai-bin Tang,et al.  Numerical simulation of plasma power deposition on hollow cathode walls using particle-in-cell and Monte Carlo collision method , 2018, Physics of Plasmas.

[10]  B. Wang,et al.  Target thrust measurement for applied-field magnetoplasmadynamic thruster , 2018 .

[11]  Hai-bin Tang,et al.  Magnetic mirror effect in a cylindrical Hall thruster , 2018 .

[12]  C. Charles,et al.  High temperature electrons exhausted from rf plasma sources along a magnetic nozzle , 2017 .

[13]  Kazunori Takahashi,et al.  Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle. , 2017, Physical review letters.

[14]  D. Bora,et al.  Formation of annular plasma downstream by magnetic aperture in the helicon experimental device , 2017 .

[15]  Kazunori Takahashi,et al.  Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster , 2016 .

[16]  M. Merino,et al.  Effect of the plasma-induced magnetic field on a magnetic nozzle , 2016 .

[17]  M. Merino,et al.  Influence of Electron and Ion Thermodynamics on the Magnetic Nozzle Plasma Expansion , 2015, IEEE Transactions on Plasma Science.

[18]  Maxwell G. Ballenger,et al.  Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle , 2014 .

[19]  Thomas M. York,et al.  Energy conversion and transfer for plasmas in a magnetic expansion configuration , 2014 .

[20]  Abhijit Ghosh,et al.  Plasma density accumulation on a conical surface for diffusion along a diverging magnetic field , 2014 .

[21]  Nagendra Singh,et al.  Numerical simulation of current-free double layers created in a helicon plasma device , 2012 .

[22]  S. Raychaudhuri,et al.  Two-dimensional double layer in plasma in a diverging magnetic field , 2012 .

[23]  C. Charles,et al.  Axial force imparted by a current-free magnetically expanding plasma , 2012 .

[24]  C. Charles,et al.  Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory. , 2011, Physical review letters.

[25]  Christine Charles,et al.  Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster , 2011 .

[26]  M. Merino,et al.  Plasma detachment mechanisms in a magnetic nozzle , 2011 .

[27]  E. Choueiri,et al.  Plasma detachment and momentum transfer in magnetic nozzles , 2011 .

[28]  M. Merino,et al.  On plasma detachment in propulsive magnetic nozzles , 2011 .

[29]  R. Winglee,et al.  Enhanced diamagnetic perturbations and electric currents observed downstream of the high power helicon , 2011 .

[30]  Kazunori Takahashi,et al.  Operation of a permanent-magnets- expanding plasma source connected to a large-volume diffusion chamber , 2011 .

[31]  P. Elias,et al.  Plasma detachment from a magnetic nozzle , 2010 .

[32]  S. Yoshimura,et al.  Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field. , 2010, Physics of plasmas.

[33]  M. Merino,et al.  Two-dimensional supersonic plasma acceleration in a magnetic nozzle , 2010 .

[34]  C. Charles High density conics in a magnetically expanding helicon plasma , 2010 .

[35]  Christine Charles,et al.  Plasmas for spacecraft propulsion , 2009 .

[36]  C. Charles,et al.  Transport of energetic electrons in a magnetically expanding helicon double layer plasma , 2009 .

[37]  C. Charles,et al.  Spatial retarding field energy analyzer measurements downstream of a helicon double layer plasma , 2008 .

[38]  C. Bruno,et al.  VASIMR Prefeasibility Analysis , 2008 .

[39]  A. Arefiev,et al.  Ambipolar acceleration of ions in a magnetic nozzle , 2007 .

[40]  A. Fruchtman,et al.  Electric field in a double layer and the imparted momentum. , 2006, Physical review letters.

[41]  Joseph Wang,et al.  Modelling Ion Thruster Beam Neutralization , 2005 .

[42]  Boris N. Breizman,et al.  Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle , 2005 .

[43]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[44]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[45]  John P. Verboncoeur,et al.  Loading and injection of Maxwellian distributions in particle simulations , 2000 .

[46]  S. A. Andersen,et al.  Continuous supersonic plasma wind tunnel , 1968 .