Adjustable robust optimization through multi-parametric programming

Adjustable robust optimization (ARO) involves recourse decisions (i.e. reactive actions after the realization of the uncertainty, ‘wait-and-see’) as functions of the uncertainty, typically posed in a two-stage stochastic setting. Solving the general ARO problems is challenging, therefore ways to reduce the computational effort have been proposed, with the most popular being the affine decision rules, where ‘wait-and-see’ decisions are approximated as affine adjustments of the uncertainty. In this work we propose a novel method for the derivation of generalized affine decision rules for linear mixed-integer ARO problems through multi-parametric programming, that lead to the exact and global solution of the ARO problem. The problem is treated as a multi-level programming problem and it is then solved using a novel algorithm for the exact and global solution of multi-level mixed-integer linear programming problems. The main idea behind the proposed approach is to solve the lower optimization level of the ARO problem parametrically, by considering ‘here-and-now’ variables and uncertainties as parameters. This will result in a set of affine decision rules for the ‘wait-and-see’ variables as a function of ‘here-and-now’ variables and uncertainties for their entire feasible space. A set of illustrative numerical examples are provided to demonstrate the potential of the proposed novel approach.

[1]  Efstratios N. Pistikopoulos,et al.  B-POP: Bi-level parametric optimization toolbox , 2019, Comput. Chem. Eng..

[2]  Surabhi Sinha Fuzzy mathematical programming applied to multi-level programming problems , 2003, Comput. Oper. Res..

[3]  Daniel Kuhn,et al.  K-Adaptability in Two-Stage Robust Binary Programming , 2015, Oper. Res..

[4]  Dick den Hertog,et al.  Robust optimization of uncertain multistage inventory systems with inexact data in decision rules , 2017, Comput. Manag. Sci..

[5]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for multi-level 0-1 programming problems through genetic algorithms , 1999, Eur. J. Oper. Res..

[6]  Efstratios N. Pistikopoulos,et al.  A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems , 2019, Comput. Chem. Eng..

[7]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[8]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[9]  E. Pistikopoulos,et al.  A multiparametric programming approach for mixed-integer quadratic engineering problems , 2002 .

[10]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[11]  Masatoshi Sakawa,et al.  Interactive fuzzy stochastic multi-level 0-1 programming using tabu search and probability maximization , 2014, Expert Syst. Appl..

[12]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[13]  Dimitris Bertsimas,et al.  Binary decision rules for multistage adaptive mixed-integer optimization , 2018, Math. Program..

[14]  Long Zhao,et al.  Solving two-stage robust optimization problems using a column-and-constraint generation method , 2013, Oper. Res. Lett..

[15]  Ue-Pyng Wen,et al.  The hybrid algorithm for solving the three-level linear programming problem , 1986, Comput. Oper. Res..

[16]  Pablo A. Parrilo,et al.  A Hierarchy of Near-Optimal Policies for Multistage Adaptive Optimization , 2011, IEEE Transactions on Automatic Control.

[17]  D. J. White Penalty Function Approach to Linear Trilevel Programming , 1997 .

[18]  Jonathan F. Bard,et al.  An investigation of the linear three level programming problem , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Chrysanthos E. Gounaris,et al.  Theoretical and computational comparison of continuous‐time process scheduling models for adjustable robust optimization , 2018 .

[20]  Charles Blair,et al.  The computational complexity of multi-level linear programs , 1992, Ann. Oper. Res..

[21]  Chrysanthos E. Gounaris,et al.  Robust optimization for decision-making under endogenous uncertainty , 2018, Comput. Chem. Eng..

[22]  Hussein Naseraldin,et al.  Facility Location: A Robust Optimization Approach , 2011 .

[23]  Constantine Caramanis,et al.  Adaptability via sampling , 2007, 2007 46th IEEE Conference on Decision and Control.

[24]  M. Sakawa,et al.  Interactive fuzzy programming for multilevel linear programming problems , 1998 .

[25]  Omid Nohadani,et al.  Optimization under Decision-Dependent Uncertainty , 2016, SIAM J. Optim..

[26]  Young-Jou Lai,et al.  Hierarchical optimization: A satisfactory solution , 1996, Fuzzy Sets Syst..

[27]  Dimitris Bertsimas,et al.  Constructing Uncertainty Sets for Robust Linear Optimization , 2009, Oper. Res..

[28]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[29]  Fengqi You,et al.  Data‐driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty , 2017 .

[30]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[31]  Bo Zeng,et al.  Robust unit commitment problem with demand response and wind energy , 2012, PES 2012.

[32]  Efstratios N. Pistikopoulos,et al.  On multi-parametric programming and its applications in process systems engineering , 2016 .

[33]  Dimitris Bertsimas,et al.  Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization , 2015, Oper. Res..

[34]  Berç Rustem,et al.  A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems , 2009, Comput. Manag. Sci..

[35]  E. Stanley Lee,et al.  Fuzzy approach for multi-level programming problems , 1996, Comput. Oper. Res..

[36]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[37]  Michael Poss Robust combinatorial optimization with variable cost uncertainty , 2014, Eur. J. Oper. Res..

[38]  Efstratios N. Pistikopoulos,et al.  On unbounded and binary parameters in multi-parametric programming: applications to mixed-integer bilevel optimization and duality theory , 2017, J. Glob. Optim..

[39]  Melvyn Sim,et al.  Adjustable Robust Optimization via Fourier-Motzkin Elimination , 2018, Oper. Res..

[40]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[41]  Tapan Kumar Roy,et al.  Fuzzy goal programming approach to multilevel programming problems , 2007, Eur. J. Oper. Res..

[42]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[43]  Efstratios N. Pistikopoulos,et al.  Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems , 2019, J. Glob. Optim..