Embedded Real-time Stereo Estimation via Semi-Global Matching on the GPU

Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy-efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640480, 128 disparity levels, and using 4 path directions for the SGM method.

[1]  Heiko Hirschmüller,et al.  Evaluation of Stereo Matching Costs on Images with Radiometric Differences , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  F. Giesemann,et al.  VLIW architecture optimization for an efficient computation of stereoscopic video applications , 2010, The 2010 International Conference on Green Circuits and Systems.

[3]  Peter Pirsch,et al.  Real-time semi-global matching disparity estimation on the GPU , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[4]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Yann LeCun,et al.  Computing the stereo matching cost with a convolutional neural network , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Sergiu Nedevschi,et al.  GPU optimization of the SGM stereo algorithm , 2010, Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing.

[7]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[8]  Ines Ernst,et al.  Mutual Information Based Semi-Global Stereo Matching on the GPU , 2008, ISVC.

[9]  Juan C. Moure,et al.  Thread-cooperative, bit-parallel computation of levenshtein distance on GPU , 2014, ICS '14.

[10]  Raúl Rojas,et al.  Large scale Semi-Global Matching on the CPU , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[11]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hamid R. Arabnia,et al.  A distributed stereocorrelation algorithm , 1995, Proceedings of Fourth International Conference on Computer Communications and Networks - IC3N'95.

[13]  HirschmullerHeiko Stereo Processing by Semiglobal Matching and Mutual Information , 2008 .

[14]  Philip L. Davidson,et al.  Real-time stereo vision using semi-global matching on programmable graphics hardware , 2006, SIGGRAPH '06.

[15]  Peter Pirsch,et al.  Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation , 2010, 2010 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

[16]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[17]  David Vázquez,et al.  3D-Guided Multiscale Sliding Window for Pedestrian Detection , 2015, IbPRIA.

[18]  Raúl Rojas,et al.  Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance , 2013, CAIP.