Analytic energy derivatives for coupled‐cluster methods describing excited states: General formulas and comparison of computational costs

It is possible to derive energy derivatives for nonvariational (e.g., coupled-cluster) methods invoking the generalized Hellmann–Feynman theorem. In such a procedure, one constructs a functional which, besides the usual wave-function parameters, contains new ones. One set of stationary conditions will reproduce exactly the original equations of the method, while the others will determine the value of the new parameters. We applied this straightforward procedure to derive analytic energy derivatives for several coupled-cluster (CC) methods applicable to excited states such as the Hilbert-space CC method, two-determinetal (TD) CC method, Fock-space CC method, and equation-of-motion–CC (EOM–CC) method. Finally, we compared the computational requirements for the different methods. © 1995 John Wiley & Sons, Inc.

[1]  J. Gauss,et al.  Analytic energy derivatives for ionized states described by the equation‐of‐motion coupled cluster method , 1994 .

[2]  R. Bartlett,et al.  Analytic energy gradients for the two-determinant coupled cluster method with application to singlet excited states of butadiene and ozone , 1994 .

[3]  J. Gauss,et al.  Analytic energy gradients for the equation‐of‐motion coupled‐cluster method: Implementation and application to the HCN/HNC system , 1994 .

[4]  Roy,et al.  Stationary multideterminantal coupled-cluster response. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  Josef Paldus,et al.  Algebraic Approach to Coupled Cluster Theory , 1994 .

[6]  J. Stanton,et al.  Stationary points on the S1 potential energy surface of C2H2 , 1994 .

[7]  Gulzari Malli,et al.  Relativistic and electron correlation effects in molecules and solids , 1994 .

[8]  John F. Stanton,et al.  Many‐body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation‐of‐motion coupled‐cluster method , 1993 .

[9]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[10]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[11]  R. Bartlett,et al.  Does chlorine peroxide exhibit a strong ultraviolet absorption near 250 nm , 1993 .

[12]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[13]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[14]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[15]  R. Bartlett,et al.  Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD+T(CCSD), CCSD(T),and QCISD(T) , 1992 .

[16]  John F. Stanton,et al.  Fock space multireference coupled-cluster theory for general single determinant reference functions , 1992 .

[17]  M. Ernzerhof,et al.  On the calculation of first‐order properties: Expectation value versus energy derivative approach , 1992 .

[18]  R. Bartlett,et al.  Coupled-cluster method for open-shell singlet states , 1992 .

[19]  An open-shell coupled-cluster response method for static properties , 1992 .

[20]  Hans Lischka,et al.  A general multireference configuration interaction gradient program , 1992 .

[21]  Josef Paldus,et al.  Coupled Cluster Theory , 1992 .

[22]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[23]  R. Bartlett,et al.  Coupled‐cluster open‐shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations , 1991 .

[24]  R. Bartlett,et al.  Analytic evaluation of energy gradients at the coupled‐cluster singles and doubles level using quasi‐restricted Hartree–Fock open‐shell reference functions , 1991 .

[25]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[26]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[27]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[28]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[29]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[30]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[31]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[32]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[33]  J. Paldus,et al.  Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function , 1989 .

[34]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[35]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[36]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[37]  J. Paldus,et al.  Spin-Adapted Multi-Reference Coupled Cluster Formalism Including Non-Linear Terms and its Application to the H4 Model System , 1989 .

[38]  Pál Multireference coupled-cluster response approach for the calculation of static properties. , 1989, Physical review. A, General physics.

[39]  Analytical MBPT(4) gradients , 1988 .

[40]  J. Gauss,et al.  Analytical differentiation of the energy contribution due to triple excitations in fourth-order Møller-Plesset perturbation theory , 1988 .

[41]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[42]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[43]  Trygve Helgaker,et al.  Mo/ller–Plesset energy derivatives , 1988 .

[44]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[45]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[46]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[47]  J. Gauss,et al.  Implementation of analytical energy gradients at third- and fourth-order Møller-Plesset perturbation theory , 1987 .

[48]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[49]  Ron Shepard,et al.  Geometrical energy derivative evaluation with MRCI wave functions , 1987 .

[50]  R. Bartlett Analytical Evaluation of Gradients in Coupled-Cluster and Many-Body Perturbation Theory , 1986 .

[51]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[52]  T. Helgaker,et al.  A second-quantization approach to the analytical evaluation of response properties for perturbation-dependent basis sets , 1984 .

[53]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[54]  P. Pulay,et al.  AB Initio Vibrational Force Fields , 1984 .

[55]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[56]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[57]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[58]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[59]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[60]  Debashis Mukherjee,et al.  A response-function approach to the direct calculation of the transition-energy in a multiple-cluster expansion formalism , 1979 .

[61]  Kimihiko Hirao,et al.  Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory , 1978 .

[62]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .