Wavelet optimized finite difference method using interpolating wavelets for self-adjoint singularly perturbed problems
暂无分享,去创建一个
[1] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[2] R. Bellman,et al. Quasilinearization and nonlinear boundary-value problems , 1966 .
[3] Gilles Deslauriers,et al. Symmetric Iterative Interpolation Processes , 1989 .
[4] Mani Mehra,et al. Cubic spline Adaptive Wavelet Scheme to Solve singularly perturbed Reaction Diffusion Problems , 2007, Int. J. Wavelets Multiresolution Inf. Process..
[5] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[6] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[7] Naoki Saito,et al. Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..
[8] Wil H. A. Schilders,et al. Uniform Numerical Methods for Problems with Initial and Boundary Layers , 1980 .
[9] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[10] JohnM . Miller,et al. Robust Computational Techniques for Boundary Layers , 2000 .
[11] J. J. Miller,et al. Fitted Numerical Methods for Singular Perturbation Problems , 1996 .
[12] J. Lubuma,et al. Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems , 2006 .
[13] Leland Jameson,et al. A Wavelet-Optimized, Very High Order Adaptive Grid and Order Numerical Method , 1998, SIAM J. Sci. Comput..
[14] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[15] Mohan K. Kadalbajoo,et al. Fitted mesh B-spline collocation method for solving self-adjoint singularly perturbed boundary value problems , 2005, Appl. Math. Comput..