Insights into the pathobiology of Paracoccidioides brasiliensis from transcriptome analysis—advances and perspectives

[1]  D. Passos-Silva,et al.  Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. , 2007, Microbes and infection.

[2]  W. Goldman,et al.  Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor , 2007, Proceedings of the National Academy of Sciences.

[3]  Maristela Pereira,et al.  Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. , 2006, Microbes and infection.

[4]  M. Franco,et al.  Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. , 2006, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[5]  G. Goldman,et al.  Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis , 2006, Molecular Genetics and Genomics.

[6]  E. Donadi,et al.  Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells , 2006, BMC Genomics.

[7]  G. Goldman,et al.  Microsatellite Analysis of Three Phylogenetic Species of Paracoccidioides brasiliensis , 2006, Journal of Clinical Microbiology.

[8]  M. Wüthrich,et al.  Global Control of Dimorphism and Virulence in Fungi , 2006, Science.

[9]  R. Lempicki,et al.  Functional Genomics of Innate Host Defense Molecules in Normal Human Monocytes in Response to Aspergillus fumigatus , 2006, Infection and Immunity.

[10]  E. Domann,et al.  Intracellular Gene Expression Profile of Listeria monocytogenes , 2006, Infection and Immunity.

[11]  Ding-Yah Yang,et al.  Transcriptome Analysis of Paracoccidioides brasiliensis Cells Undergoing Mycelium-to-Yeast Transition , 2005, Eukaryotic Cell.

[12]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[13]  C. Nombela,et al.  The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans , 2005, Molecular and Cellular Biology.

[14]  H. Nakayashiki RNA silencing in fungi: Mechanisms and applications , 2005, FEBS letters.

[15]  M. Franco,et al.  Virulence profile of ten Paracoccidioides brasiliensis isolates: association with morphologic and genetic patterns. , 2005, Revista do Instituto de Medicina Tropical de Sao Paulo.

[16]  P. R. Kraus,et al.  Cryptococcus neoformans Gene Expression during Murine Macrophage Infection , 2005, Eukaryotic Cell.

[17]  Nalvo F. Almeida,et al.  Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells* , 2005, Journal of Biological Chemistry.

[18]  Maristela Pereira,et al.  Screening for glycosylphosphatidylinositol-anchored proteins in the Paracoccidioides brasiliensis transcriptome. , 2005, Genetics and molecular research : GMR.

[19]  I. Silva-Pereira,et al.  Virulence insights from the Paracoccidioides brasiliensis transcriptome. , 2005, Genetics and molecular research : GMR.

[20]  S. Chanock,et al.  Expression of Genes Encoding Innate Host Defense Molecules in Normal Human Monocytes in Response to Candida albicans , 2005, Infection and Immunity.

[21]  Kathrine B. Christensen,et al.  Identity and effects of quorum-sensing inhibitors produced by Penicillium species. , 2005, Microbiology.

[22]  Gerald R. Fink,et al.  Transcriptional Response of Candida albicans upon Internalization by Macrophages , 2004, Eukaryotic Cell.

[23]  F. Klis,et al.  The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. , 2004, Microbiology.

[24]  L. Travassos,et al.  Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis , 2004, Molecular Genetics and Genomics.

[25]  Leonardo Broetto,et al.  Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle. , 2004, Research in microbiology.

[26]  R. Bhatnagar,et al.  RNA Interference: Biology, Mechanism, and Applications , 2003, Microbiology and Molecular Biology Reviews.

[27]  Jacques Corbeil,et al.  Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. , 2003, FEMS immunology and medical microbiology.

[28]  M. Whiteway,et al.  Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. , 2003, Molecular biology of the cell.

[29]  M. Tomita,et al.  Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. , 2003, Genome research.

[30]  R. Mortara,et al.  Chromosomal polymorphism, syntenic relationships, and ploidy in the pathogenic fungus Paracoccidioides brasiliensis. , 2003, Fungal genetics and biology : FG & B.

[31]  Christophe d'Enfert,et al.  Stage‐specific gene expression of Candida albicans in human blood , 2003, Molecular microbiology.

[32]  G. Splitter,et al.  Microarray Analysis of mRNA Levels from RAW264.7 Macrophages Infected with Brucella abortus , 2003, Infection and Immunity.

[33]  Adilton G. Oliveira,et al.  Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis , 2003, Yeast.

[34]  C. P. Semighini,et al.  Expressed Sequence Tag Analysis of the Human Pathogen Paracoccidioides brasiliensis Yeast Phase: Identification of Putative Homologues of Candida albicans Virulence and Pathogenicity Genes , 2003, Eukaryotic Cell.

[35]  M. T. Peraçoli,et al.  Effect of cytokines on the in vitro fungicidal activity of monocytes from paracoccidioidomycosis patients. , 2003, Microbes and infection.

[36]  Ash A. Alizadeh,et al.  Stereotyped and specific gene expression programs in human innate immune responses to bacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Lander,et al.  Human macrophage activation programs induced by bacterial pathogens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Rossi,et al.  Interferon-γ and Tumor Necrosis Factor-α Determine Resistance to Paracoccidioides brasiliensis Infection in Mice , 2000 .

[39]  R. Mortara,et al.  Electrophoretic Karyotypes and Genome Sizing of the Pathogenic Fungus Paracoccidioides brasiliensis , 1998, Journal of Clinical Microbiology.

[40]  M. Franco,et al.  Host-parasite relationship in paracoccidioidomycosis. , 1995, Current topics in medical mycology.

[41]  C. M. Soares,et al.  Characterization of Paracoccidioides brasiliensis isolates by random amplified polymorphic DNA analysis , 1995, Journal of clinical microbiology.

[42]  E. Brummer,et al.  Intracellular multiplication of Paracoccidioides brasiliensis in macrophages: killing and restriction of multiplication by activated macrophages , 1989, Infection and immunity.

[43]  W. Goldman,et al.  Cell walls from avirulent variants of Histoplasma capsulatum lack alpha-(1,3)-glucan , 1988, Infection and immunity.

[44]  Á. Restrepo,et al.  Morphological study of a variant of Paracoccidioides brasiliensis that exists in the yeast form at room temperature. , 1988, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[45]  J. McEwen,et al.  Nuclear staining of Paracoccidioides brasiliensis conidia. , 1987, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[46]  F. Mariat,et al.  Nutritional studies on Paracoccidioides brasiliensis: the role of organic sulfur in dimorphism. , 1985, Sabouraudia.

[47]  F. San-Blas,et al.  Paracoccidioides brasileensis: Cell wall structure and virulence , 1977, Mycopathologia.

[48]  D. Passos-Silva,et al.  Transcriptional response of murine macrophages upon infection with opsonized Paracoccidioides brasiliensis yeast cells. , 2008, Microbes and infection.

[49]  W. Goldman,et al.  Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. A. Carmona,et al.  Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. , 2007, Fungal genetics and biology : FG & B.

[51]  John W. Taylor,et al.  Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. , 2006, Molecular biology and evolution.

[52]  M. Rossi,et al.  Interferon-gamma and tumor necrosis factor-alpha determine resistance to Paracoccidioides brasiliensis infection in mice. , 2000, The American journal of pathology.

[53]  John E. Bennett,et al.  Principles and practice of infectious diseases. Vols 1 and 2. , 1979 .

[54]  J. M. Herrera [Paracoccidioides brasiliensis]. , 1955, Archivos medicos panamenos.

[55]  Maristela Pereira,et al.  Bmc Microbiology , 2022 .