Exploiting Discourse Structure for Spoken Dialogue Performance Analysis

In this paper we study the utility of discourse structure for spoken dialogue performance modeling. We experiment with various ways of exploiting the discourse structure: in isolation, as context information for other factors (correctness and certainty) and through trajectories in the discourse structure hierarchy. Our correlation and PARADISE results show that, while the discourse structure is not useful in isolation, using the discourse structure as context information for other factors or via trajectories produces highly predictive parameters for performance analysis.

[1]  Marilyn A. Walker,et al.  Towards developing general models of usability with PARADISE , 2000, Natural Language Engineering.

[2]  Diane J. Litman,et al.  Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System with Generic, Tutoring, and User Affect Parameters , 2006, NAACL.

[3]  Alexander I. Rudnicky,et al.  Ravenclaw: dialog management using hierarchical task decomposition and an expectation agenda , 2003, INTERSPEECH.

[4]  Daniel Marcu,et al.  Evaluating Multiple Aspects of Coherence in Student Essays , 2004, NAACL.

[5]  Candace L. Sidner,et al.  Attention, Intentions, and the Structure of Discourse , 1986, CL.

[6]  L SidnerCandace,et al.  Attention, intentions, and the structure of discourse , 1986 .

[7]  Scotty D. Craig,et al.  Affect and learning: An exploratory look into the role of affect in learning with AutoTutor , 2004 .

[8]  Sebastian Möller,et al.  Parameters for Quantifying the Interaction with Spoken Dialogue Telephone Services , 2005, SIGDIAL.

[9]  Gregory A. Sanders,et al.  DARPA communicator: cross-system results for the 2001 evaluation , 2002, INTERSPEECH.

[10]  Carolyn Penstein Rosé,et al.  The Architecture of Why2-Atlas: A Coach for Qualitative Physics Essay Writing , 2002, Intelligent Tutoring Systems.

[11]  Gina-Anne Levow,et al.  Prosodic Cues to Discourse Segment Boundaries in Human-Computer Dialogue , 2004, SIGDIAL Workshop.

[12]  Diane J. Litman,et al.  Dependencies between Student State and Speech Recognition Problems in Spoken Tutoring Dialogues , 2006, ACL.

[13]  Marilyn A. Walker,et al.  Quantitative and Qualitative Evaluation of Darpa Communicator Spoken Dialogue Systems , 2001, ACL.

[14]  Brady Clark,et al.  Responding to Student Uncertainty in Spoken Tutorial Dialogue Systems , 2006, Int. J. Artif. Intell. Educ..

[15]  Kate Forbes-Riley,et al.  Using Bigrams to Identify Relationships Between Student Certainness States and Tutor Responses in a Spoken Dialogue Corpus , 2005, SIGDIAL.

[16]  Sebastian Möller Towards generic quality prediction models for spoken dialogue systems - a case study , 2005, INTERSPEECH.

[17]  Brady Clark,et al.  Evaluating the Effectiveness of SCoT: A Spoken Conversational Tutor , 2004 .

[18]  Yukiko I. Nakano,et al.  Non-Verbal Cues for Discourse Structure , 2022 .

[19]  Eduard H. Hovy,et al.  Automated Discourse Generation Using Discourse Structure Relations , 1993, Artif. Intell..

[20]  Diane J. Litman,et al.  ITSPOKE: An Intelligent Tutoring Spoken Dialogue System , 2004, NAACL.

[21]  Oliver Lemon,et al.  Combining Acoustic and Pragmatic Features to Predict Recognition Performance in Spoken Dialogue Systems , 2004, ACL.

[22]  Takashi Yamauchi,et al.  Learning from human tutoring , 2001, Cogn. Sci..

[23]  K. VanLehn,et al.  Why Do Only Some Events Cause Learning During Human Tutoring? , 2003 .

[24]  Julia Hirschberg,et al.  A Prosodic Analysis of Discourse Segments in Direction-Giving Monologues , 1996, ACL.