Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
暂无分享,去创建一个
[1] Carolyn J. Mattingly,et al. Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.
[2] Dervis Karaboga,et al. AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .
[3] William Stafford Noble,et al. Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.
[4] Ajith Abraham,et al. Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews , 2007 .
[5] Achim Zeileis,et al. BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .
[6] Dipankar Dasgupta,et al. Motif discovery in upstream sequences of coordinately expressed genes , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[7] Hitoshi Iba,et al. Identification of weak motifs in multiple biological sequences using genetic algorithm , 2006, GECCO.
[8] D. Clayton,et al. Genome-wide association studies: theoretical and practical concerns , 2005, Nature Reviews Genetics.
[9] A. Rubio-Largo,et al. MO-ABC/DE - Multiobjective Artificial Bee Colony with Differential Evolution for unconstrained multiobjective optimization , 2012, 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI).
[10] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[11] G. Fogel,et al. Discovery of sequence motifs related to coexpression of genes using evolutionary computation. , 2004, Nucleic acids research.
[12] Gary B. Fogel,et al. Evolutionary computation for discovery of composite transcription factor binding sites , 2008, Nucleic acids research.
[13] Rong-Ming Chen,et al. FMGA: finding motifs by genetic algorithm , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.
[14] Khaled Rasheed,et al. MDGA: motif discovery using a genetic algorithm , 2005, GECCO '05.
[15] Miguel A. Vega-Rodríguez,et al. Predicting DNA Motifs by Using Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[16] P. D’haeseleer. What are DNA sequence motifs? , 2006, Nature Biotechnology.
[17] Miguel A. Vega-Rodríguez,et al. Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery , 2013, Eng. Appl. Artif. Intell..
[18] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[19] Dimitrios Gunopulos,et al. Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.
[20] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[21] Yuehui Chen,et al. Bacterial Foraging Optimization Algorithm Integrating Tabu Search for Motif Discovery , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine.
[22] Scott M. Williams,et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction , 2007, Genetic epidemiology.
[23] Mehmet Kaya,et al. MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..
[24] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[25] P. Shannon,et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.
[26] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .