CLCN2 Chloride Channel Mutations in Familial Hyperaldosteronism Type II

[1]  F. Veglio,et al.  Prevalence and Clinical Manifestations of Primary Aldosteronism Encountered in Primary Care Practice. , 2017, Journal of the American College of Cardiology.

[2]  C. Rose,et al.  Glutamate transporter‐associated anion channels adjust intracellular chloride concentrations during glial maturation , 2017, Glia.

[3]  Hynek Pikhart,et al.  Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants , 2017, The Lancet.

[4]  Paul Valiant,et al.  Quantifying unobserved protein-coding variants in human populations provides a roadmap for large-scale sequencing projects , 2016, Nature Communications.

[5]  S. Bandulik,et al.  Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca(2+)-ATPase ATP2B3. , 2016, Endocrinology.

[6]  W. Young,et al.  The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. , 2016, The Journal of clinical endocrinology and metabolism.

[7]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[8]  U. Scholl,et al.  An Update on Familial Hyperaldosteronism , 2015, Hormone and Metabolic Research.

[9]  T. Jentsch,et al.  Discovery of CLC transport proteins: cloning, structure, function and pathophysiology , 2015, The Journal of physiology.

[10]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[11]  Murim Choi,et al.  Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism , 2015, eLife.

[12]  R. Gibbs,et al.  Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. , 2015, Human molecular genetics.

[13]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[14]  T. Strom,et al.  Genetic Spectrum and Clinical Correlates of Somatic Mutations in Aldosterone-Producing Adenoma , 2014, Hypertension.

[15]  James Hadfield,et al.  Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension , 2013, Nature Genetics.

[16]  Annabelle L. Fonseca,et al.  Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism , 2013, Nature Genetics.

[17]  M. Kamermans,et al.  Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study , 2013, The Lancet Neurology.

[18]  H. Lerche,et al.  Regulation of ClC-2 gating by intracellular ATP , 2013, Pflügers Archiv - European Journal of Physiology.

[19]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[20]  T. Wieland,et al.  Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension , 2013, Nature Genetics.

[21]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[22]  Alan D. Lopez,et al.  A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[23]  P. Barrett,et al.  Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. , 2012, The Journal of clinical investigation.

[24]  X. Gasull,et al.  GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl− Channel Auxiliary Subunit , 2012, Neuron.

[25]  R. Lifton,et al.  Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5 , 2012, Proceedings of the National Academy of Sciences.

[26]  K. Carss,et al.  Further study of chromosome 7p22 to identify the molecular basis of familial hyperaldosteronism type II , 2011, Journal of Human Hypertension.

[27]  S. Mane,et al.  K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension , 2011, Science.

[28]  P. Hidalgo,et al.  Gating of human ClC‐2 chloride channels and regulation by carboxy‐terminal domains , 2008, The Journal of physiology.

[29]  C. Gomez-Sanchez,et al.  Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion. , 2007, The Journal of endocrinology.

[30]  Lise Getoor,et al.  SplicePort—An interactive splice-site analysis tool , 2007, Nucleic Acids Res..

[31]  M. Schweizer,et al.  Leukoencephalopathy upon Disruption of the Chloride Channel ClC-2 , 2007, The Journal of Neuroscience.

[32]  J. Arreola,et al.  Quantitative Analysis of the Voltage-dependent Gating of Mouse Parotid ClC-2 Chloride Channel , 2005, The Journal of general physiology.

[33]  S. Frings,et al.  Chloride Accumulation in Mammalian Olfactory Sensory Neurons , 2004, The Journal of Neuroscience.

[34]  E. Génin,et al.  Estimating the age of rare disease mutations: the example of Triple-A syndrome , 2004, Journal of Medical Genetics.

[35]  L. Hunyady,et al.  Control of aldosterone secretion: a model for convergence in cellular signaling pathways. , 2004, Physiological reviews.

[36]  Takashi Suzuki,et al.  The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. , 2004, Molecular endocrinology.

[37]  Francisco V Sepúlveda,et al.  A Conserved Pore‐Lining Glutamate as a Voltage‐ and Chloride‐Dependent Gate in the ClC‐2 Chloride Channel , 2003, The Journal of physiology.

[38]  C. Stratakis,et al.  A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22) , 2000, Journal of medical genetics.

[39]  A. Accardi,et al.  Fast and Slow Gating Relaxations in the Muscle Chloride Channel Clc-1 , 2000, The Journal of general physiology.

[40]  L. Gendron,et al.  A Ras-Dependent Chloride Current Activated by Adrenocorticotropin in Rat Adrenal Zona Glomerulosa Cells1. , 2000, Endocrinology.

[41]  G. Chrousos,et al.  Journal of Clinical Endocrinology and Metabolism Printed in U.S.A. Copyright © 1998 by The Endocrine Society Familial Hyperaldosteronism Type II: Description of a Large Kindred and Exclusion of the Aldosterone , 2022 .

[42]  W. Boron,et al.  Intracellular pH Regulation in Cultured Astrocytes from Rat Hippocampus , 1997, The Journal of general physiology.

[43]  A. Bachmann,et al.  Clinical, biochemical and genetic approaches to the detection of familial hyperaldosteronism type I , 1995, Journal of hypertension.

[44]  N. Akaike,et al.  Gramicidin perforated patch-clamp technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii neurons of the rat. , 1994, Journal of neurophysiology.

[45]  I. Bird,et al.  The NCI-H295 cell line: a pluripotent model for human adrenocortical studies , 1994, Molecular and Cellular Endocrinology.

[46]  M. Stowasser,et al.  FAMILIAL HYPERALDOSTERONISM TYPE II: FIVE FAMILIES WITH A NEW VARIETY OF PRIMARY ALDOSTERONISM , 1992, Clinical and experimental pharmacology & physiology.

[47]  Thomas J. Jentsch,et al.  A chloride channel widely expressed in epithelial and non-epithelial cells , 1992, Nature.

[48]  J. Lalouel,et al.  A chimaeric llβ-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension , 1992, Nature.

[49]  A. Verkman Development and biological applications of chloride-sensitive fluorescent indicators. , 1990, The American journal of physiology.

[50]  A. Verkman,et al.  Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts. , 1989, Biophysical journal.

[51]  A. Chorvatova,et al.  A Ras-dependent chloride current activated by adrenocorticotropin in rat adrenal zona glomerulosa cells. , 2000, Endocrinology.