Graph Cuts with Interacting Edge Costs - Examples, Approximations, and Algorithms

We study an extension of the classical graph cut problem, wherein we replace the modular (sum of edge weights) cost function by a submodular set function defined over graph edges. Special cases of this problem have appeared in different applications in signal processing, machine learning, and computer vision. In this paper, we connect these applications via the generic formulation of "cooperative graph cuts", for which we study complexity, algorithms, and connections to polymatroidal network flows. Finally, we compare the proposed algorithms empirically.

[1]  J. Bilmes,et al.  Cooperative Cuts: Graph Cuts with Submodular Edge Weights , 2010 .

[2]  Vladimir Kolmogorov,et al.  Minimizing a sum of submodular functions , 2010, Discret. Appl. Math..

[3]  Jeff A. Bilmes,et al.  On Triangulating Dynamic Graphical Models , 2002, UAI.

[4]  Camille Couprie,et al.  Combinatorial Continuous Maximum Flow , 2010, SIAM J. Imaging Sci..

[5]  Pushmeet Kohli,et al.  P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Gagan Goel,et al.  Combinatorial Problems with Discounted Price Functions in Multi-agent Systems , 2010, FSTTCS.

[7]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[8]  Hui Lin,et al.  Learning Mixtures of Submodular Shells with Application to Document Summarization , 2012, UAI.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Rishabh K. Iyer,et al.  Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints , 2013, NIPS.

[11]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[13]  Francesco Maffioli,et al.  Minimum cut bases in undirected networks , 2010, Discret. Appl. Math..

[14]  Refael Hassin,et al.  Approximation algorithms and hardness results for labeled connectivity problems , 2006, J. Comb. Optim..

[15]  Jeff A. Bilmes,et al.  Approximation Bounds for Inference using Cooperative Cuts , 2011, ICML.

[16]  Andreas Krause,et al.  SFO: A Toolbox for Submodular Function Optimization , 2010, J. Mach. Learn. Res..

[17]  Andreas Krause,et al.  Learning Fourier Sparse Set Functions , 2012, AISTATS.

[18]  Sreeram Kannan,et al.  Local phy + global flow: A layering principle for wireless networks , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[19]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  D. R. Fulkerson,et al.  On the Max Flow Min Cut Theorem of Networks. , 1955 .

[21]  Jan Vondrák,et al.  Local Distribution and the Symmetry Gap: Approximability of Multiway Partitioning Problems , 2013, SODA.

[22]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[23]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[24]  Trevor Darrell,et al.  Communal Cuts : sharing cuts across images , 2014 .

[25]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[27]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Rishabh K. Iyer,et al.  Fast Semidifferential-based Submodular Function Optimization , 2013, ICML.

[29]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Sreeram Kannan,et al.  Multicommodity flows and cuts in polymatroidal networks , 2011, ITCS '12.

[31]  Michel Couprie,et al.  Some links between extremum spanning forests, watersheds and min-cuts , 2010, Image Vis. Comput..

[32]  Jeff A. Bilmes,et al.  Dynamic Graphical Models , 2010, IEEE Signal Processing Magazine.

[33]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Christoph Buchheim,et al.  Exact Algorithms for Combinatorial Optimization Problems with Submodular Objective Functions , 2013 .

[35]  Refael Hassin,et al.  Minimum cost flow with set-constraints , 1982, Networks.

[36]  Stefanie Jegelka Combinatorial problems with submodular coupling in machine learning and computer vision , 2012 .

[37]  Evdokia Nikolova,et al.  Approximation Algorithms for Reliable Stochastic Combinatorial Optimization , 2010, APPROX-RANDOM.

[38]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[39]  E. L. Lawler,et al.  Computing Maximal "Polymatroidal" Network Flows , 1982, Math. Oper. Res..

[40]  Alkis Gotovos,et al.  Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Hui Lin,et al.  On fast approximate submodular minimization , 2011, NIPS.

[42]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[43]  Rishabh K. Iyer,et al.  Learning Mixtures of Submodular Functions for Image Collection Summarization , 2014, NIPS.

[44]  Jin-Yi Cai,et al.  Approximation and hardness results for label cut and related problems , 2009, J. Comb. Optim..

[45]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[46]  Somesh Jha,et al.  Two formal analyses of attack graphs , 2002, Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15.

[47]  Robert D. Kleinberg,et al.  On Learning Submodular Functions A Preliminary Draft , 2007 .

[48]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Christos Koufogiannakis,et al.  Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost , 2013, Algorithmica.

[50]  Takeshi Naemura,et al.  Superdifferential cuts for binary energies , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Andreas S. Schulz,et al.  An FPTAS for optimizing a class of low-rank functions over a polytope , 2013, Math. Program..

[52]  Antonin Chambolle,et al.  On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.

[53]  H. Narayanan Submodular functions and electrical networks , 1997 .

[54]  Stanislav Zivny,et al.  The expressive power of binary submodular functions , 2008, Discret. Appl. Math..

[55]  Le Song,et al.  Scalable diffusion-aware optimization of network topology , 2014, KDD.

[56]  Andreas Krause,et al.  Efficient Minimization of Decomposable Submodular Functions , 2010, NIPS.

[57]  R. Ravi,et al.  An FPTAS for minimizing a class of low-rank quasi-concave functions over a convex set , 2013, Oper. Res. Lett..

[58]  William H. Cunningham,et al.  Decomposition of submodular functions , 1983, Comb..

[59]  Sreeram Kannan,et al.  Multiple-unicast in fading wireless networks: A separation scheme is approximately optimal , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[60]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[61]  J. Vondrák Submodularity and curvature : the optimal algorithm , 2008 .

[62]  Jan Vondr Submodularity and Curvature: The Optimal Algorithm , 2010 .

[63]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[64]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Éva Tardos,et al.  Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..

[66]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[67]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[68]  Pushmeet Kohli,et al.  A Contour Completion Model for Augmenting Surface Reconstructions , 2014, ECCV.

[69]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[70]  Rishabh K. Iyer,et al.  Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions , 2013, NIPS.

[71]  Vladimir Kolmogorov,et al.  What metrics can be approximated by geo-cuts, or global optimization of length/area and flux , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[72]  Thorsten Joachims,et al.  Structured Learning of Sum-of-Submodular Higher Order Energy Functions , 2013, 2013 IEEE International Conference on Computer Vision.

[73]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[74]  Suvrit Sra,et al.  Reflection methods for user-friendly submodular optimization , 2013, NIPS.

[75]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[76]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .