Stabilized Weighted Reduced Basis Methods for Parametrized Advection Dominated Problems with Random Inputs

In this work, we propose viable and efficient strategies for stabilized parametrized advection dominated problems, with random inputs. In particular, we investigate the combination of the wRB (weig...

[1]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[2]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[3]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[4]  Gianluigi Rozza,et al.  On a Certified Smagorinsky Reduced Basis Turbulence Model , 2017, SIAM J. Numer. Anal..

[5]  Gianluigi Rozza,et al.  Reduced Basis Approximation of Parametrized Advection-Diffusion PDEs with High Péclet Number , 2013, ENUMATH.

[6]  G. Rozza,et al.  Comparison and combination of reduced-order modelling techniques in 3D parametrized heat transfer problems , 2011 .

[7]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[8]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[9]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[10]  Traian Iliescu,et al.  SUPG reduced order models for convection-dominated convection–diffusion–reaction equations , 2014 .

[11]  Gianluigi Rozza,et al.  Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Peclet number: roles of the boundary layers and inner fronts , 2014 .

[12]  Gianluigi Rozza,et al.  A weighted empirical interpolation method: a priori convergence analysis and applications , 2014 .

[13]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[14]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[15]  Alfio Quarteroni,et al.  An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems , 2016 .

[16]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[17]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  Gianluigi Rozza,et al.  REDUCED BASIS METHODS AND A POSTERIORI ERROR ESTIMATORS FOR HEAT TRANSFER PROBLEMS , 2009 .

[20]  Gianluigi Rozza,et al.  Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations , 2020, Comput. Math. Appl..

[21]  Christopher Spannring Weighted reduced basis methods for parabolic PDEs with random input data , 2018 .

[22]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[23]  Ramon Codina,et al.  Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations , 2013 .

[24]  Anders Logg Automated solution of differential equations , 2007 .

[25]  Traian Iliescu,et al.  Variational multiscale proper orthogonal decomposition: Navier‐stokes equations , 2012, 1210.7389.

[26]  Peng Chen,et al.  Model Order Reduction Techniques for Uncertainty Quantification Problems , 2014 .

[27]  Gianluigi Rozza,et al.  RBniCS - reduced order modelling in FEniCS , 2015 .

[28]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[29]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[30]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[31]  Gianluigi Rozza,et al.  A Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data , 2013, SIAM J. Numer. Anal..

[32]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[33]  Gianluigi Rozza,et al.  A Weighted POD Method for Elliptic PDEs with Random Inputs , 2018, J. Sci. Comput..

[34]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[35]  Traian Iliescu,et al.  Regularized Reduced Order Models for a Stochastic Burgers Equation , 2017, 1701.01155.

[36]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[37]  R. Durrett Probability: Theory and Examples , 1993 .

[38]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[39]  G. Rozza,et al.  Stabilized reduced basis method for parametrized advection-diffusion PDEs , 2014 .

[40]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[41]  J. Lang,et al.  A weighted reduced basis method for parabolic PDEs with random data , 2017, 1712.07393.

[42]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[43]  Gianluigi Rozza,et al.  Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization , 2016, J. Comput. Phys..

[44]  Volker John,et al.  Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..

[45]  Luca Dedè,et al.  Reduced Basis method for parametrized elliptic advection-reaction problems , 2010 .

[46]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[47]  Gianluigi Rozza,et al.  Reduced Basis Methods for Uncertainty Quantification , 2017, SIAM/ASA J. Uncertain. Quantification.