Static Sliding Mode Control of Systems With Arbitrary Relative Degree by Using Artificial Delay

Static output-feedback stabilization of systems with relative degree <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> with matched disturbances is considered. Assuming that the system is controllable, a static output-feedback sliding mode controller is designed, where the output derivatives up to the order <inline-formula><tex-math notation="LaTeX">$(n-1)$</tex-math></inline-formula> are approximated by using the current and the delayed values of the output. Numerical examples illustrate the efficiency of the method.

[1]  Emilia Fridman,et al.  Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay , 2019, Syst. Control. Lett..

[2]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[3]  Emilia Fridman,et al.  Delay-induced stability of vector second-order systems via simple Lyapunov functionals , 2016, Autom..

[4]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[5]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[6]  A. Sabanovic,et al.  Active filter control using a sliding mode approach , 1994, Proceedings of 1994 Power Electronics Specialist Conference - PESC'94.

[7]  Emilia Fridman,et al.  Sliding mode control in the presence of input delay: A singular perturbation approach , 2012, Autom..

[8]  Peng Shi,et al.  Fault-Tolerant Sliding-Mode-Observer Synthesis of Markovian Jump Systems Using Quantized Measurements , 2015, IEEE Transactions on Industrial Electronics.

[9]  Wen-Jun Cao,et al.  Synthesized sliding mode and time-delay control for a class of uncertain systems , 2000, Autom..

[10]  Frédéric Gouaisbaut,et al.  Robust control of delay systems: A sliding mode control design via LMI , 2001, 2001 European Control Conference (ECC).

[11]  Emilia Fridman,et al.  Stabilization by using artificial delays: An LMI approach , 2017, Autom..

[12]  George A. Anastassiou,et al.  On some estimates of the remainder in Taylor's formula , 2001 .

[13]  Peng Shi,et al.  Network-Based Event-Triggered Control for Singular Systems With Quantizations , 2016, IEEE Transactions on Industrial Electronics.

[14]  Christopher Edwards,et al.  Static Output Feedback Sliding Mode Control Design via an Artificial Stabilizing Delay , 2009, IEEE Transactions on Automatic Control.

[15]  Leonid Fridman,et al.  Continuous Twisting Algorithm for Third-Order Systems , 2020, IEEE Transactions on Automatic Control.

[16]  P. Olver Nonlinear Systems , 2013 .

[17]  Roderick G. Hebden,et al.  On the design of sliding mode output feedback controllers , 2003 .

[18]  E. Fridman,et al.  On the design of sliding mode static output feedback controllers for systems with time-varying delay , 2008, 2008 International Workshop on Variable Structure Systems.

[19]  V. I. Utkin,et al.  Sliding modes in systems with asymptotic state observers , 2019 .