Concentrated solar power on demand

[1]  S. H. White,et al.  The behavior of water in molten salts , 1987 .

[2]  Gregory J. Kolb,et al.  An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project , 2001 .

[3]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[4]  A. Steinfeld,et al.  Temperature of a Quartz/Sapphire Window in a Solar Cavity-Receiver , 2011 .

[5]  Piyush Sabharwall,et al.  Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward , 2010 .

[6]  Steve Schell,et al.  Design and evaluation of esolar's heliostat fields , 2011 .

[7]  Akiba Segal,et al.  A molten salt system with a ground base-integrated solar receiver storage tank , 1999 .

[8]  Yiding Cao,et al.  Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review , 2010 .

[9]  Jianzhong Li,et al.  A simple instrument for ultraviolet-visible absorption spectrophotometry in high temperature molten salt media , 2000 .

[10]  J. Golden,et al.  Optical properties of liquids for direct absorption solar thermal energy systems , 2009 .

[11]  Alexander Mitsos,et al.  Optimal time-invariant operation of a power and water cogeneration solar-thermal plant , 2011 .

[12]  U. Leibfried,et al.  Convective Heat Loss from Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations , 1995 .

[13]  U. Paek,et al.  High-intensity laser-induced vaporization and explosion of solid material , 1971 .

[14]  Jing Ding,et al.  Solidification and melting behaviors and characteristics of molten salt in cold filling pipe , 2010 .

[15]  Akiba Segal,et al.  Practical Considerations in Designing Large Scale Beam Down Optical Systems , 2008 .

[16]  L. G. Semenyuk Exergy loss on mixing working bodies with different temperatures , 1983, Journal of engineering physics.

[17]  DEVELOPMENT OF AN AXISYMETRIC THERMAL PLUME BETWEEN VERTICAL PLATES , 2007 .

[18]  Rainer Tamme,et al.  PCM-Graphite Composites for High Temperature Thermal Energy Storage , 2006 .

[19]  Mark S. Bohn,et al.  Heat transfer in molten salt direct absorption receivers , 1989 .

[20]  F. Kreith,et al.  Thermal energy storage at 900°C , 1984 .

[21]  T. Makino,et al.  Thermal radiation properties of molten salts (Properties of alkali metal chlorides and conductive-radiative transfer in the salts) , 1991 .

[22]  H. W. Savage,et al.  Development of Centrifugal Pumps for Operation with Liquid Metals and Molten Salts at 1100–1500°F , 1960 .

[23]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[24]  Sendhil Kumar Natarajan,et al.  Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator , 2007 .

[25]  Roberto Gabbrielli,et al.  Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants , 2009 .

[26]  针生聪,et al.  Heat storage device , 2013 .

[27]  K. Srithar,et al.  Prospects and scopes of solar pond: A detailed review , 2008 .

[28]  H. Bloom,et al.  Molten Salt Mixtures. Part 2. The Refractive Index Of Molten Nitrate Mixtures And Their Molar Refractivities , 1956 .

[29]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[30]  J. M. Chavez,et al.  Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates , 1994 .

[31]  X. D. Liu,et al.  Direct Numerical Simulation of Liquid Films with Large Interfacial Deformation† † , 2010 .

[32]  D. A. Nissen,et al.  Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts , 1983 .

[33]  Abraham Kribus,et al.  Solar tower reflector systems : A new approach for high-temperature solar plants , 1998 .

[34]  G. Janz,et al.  Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems , 1979 .

[35]  Adam Taylor Paxson,et al.  Design and validation of an air window for a molten salt solar thermal receiver , 2009 .

[36]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[37]  Aldo Steinfeld,et al.  A Novel 50kW 11,000 suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps , 2007 .

[38]  E. H. TRIPP,et al.  Materials Handbook , 1942, Nature.

[39]  D. C. Smith,et al.  The Design and Testing of a Molten Salt Steam Generator for Solar Application , 1988 .

[40]  D. Jaworske,et al.  Alignment and Initial Operation of an Advanced Solar Simulator , 1996 .

[41]  Woo-Seung Kim,et al.  STUDY OF THERMAL BEHAVIOR AND FLUID FLOW DURING LASER SURFACE HEATING OF ALLOYS , 1997 .

[42]  F. Trombe,et al.  Thousand kW solar furnace, built by the National Center of Scientific Research, in Odeillo (France) , 1973 .

[43]  D. Williams,et al.  Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop , 2006 .

[44]  J. Robert,et al.  First results obtained with the 1000 kW solar furnace , 1973 .

[45]  Andrej Lenert Nanofluid-based receivers for high-temperature, high-flux direct solar collectors , 2010 .

[46]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[47]  F. Kreith,et al.  High-temperature sensible-heat storage options , 1985 .

[48]  Robert Pitz-Paal,et al.  Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers With Varied Heat Transfer Media , 2010 .

[49]  R. E. West Direct Absorption Receiver System for High Temperature , 1987 .

[50]  D. Cho,et al.  Melting and solidification with internal radiative transfer—A generalized phase change model , 1983 .

[51]  Jack C. Swearengen,et al.  Materials-related design issues in the Solar Central Receiver pilot plant , 1979 .

[52]  Doerte Laing,et al.  Sensible Heat Storage for Medium and High Temperatures , 2008 .

[53]  S. G. Lipsett,et al.  Explosions from molten materials and water , 1966 .

[54]  K. W. Stone,et al.  Analysis of Solar Two Heliostat Tracking Error Sources , 1999 .

[55]  H. Tyagi,et al.  Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector , 2009 .

[56]  R. J. Copeland,et al.  Raft thermocline thermal storage , 1983 .

[57]  SPECTRAL APPROACH TO CALCULATE SPECULAR REFLECTION OF LIGHT FROM WAVY WATER SURFACE , 2001 .

[58]  R. Bradshaw,et al.  Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts , 2004 .

[59]  Sunil Kumar,et al.  Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film , 1990 .

[60]  M. Bohn Experimental investigation of the direct absorption receiver concept , 1987 .

[61]  T. Makino,et al.  Thermal radiation properties of molten salt (properties of alkali metal carbonates) , 1991 .

[62]  Ortwin Renn,et al.  New Energy Externalities Developments for Sustainability , 2006 .

[63]  R. Viskanta,et al.  Melting of a Semitransparent Bed of Particles by Convection and Radiation , 2006 .

[64]  C. Tyner Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans , 1989 .

[65]  Michael W. Jack,et al.  Thermodynamic optimization of a stratified thermal storage device , 2009 .

[66]  H. G. Landau,et al.  Heat conduction in a melting solid , 1950 .

[67]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[68]  C. Tien,et al.  a Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities , 1985 .

[69]  An Upper Bound on the Efficiency of a Cavity Absorber , 1981 .

[70]  William D. Drotning,et al.  Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid☆ , 1978 .

[71]  R. L. Baker A steady-state melt layer model with absorption, conduction, and surface vaporization , 1982 .

[72]  I. Bassett,et al.  Optimization of Imperfect Diffuse Reflectors , 1985 .

[73]  Charles W. Forsberg,et al.  Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC) , 2009 .

[74]  A. Lazaridis,et al.  Temperature distribution in a solar irradiated liquid film flowing over a solid wall , 1986 .

[75]  N. Siegel,et al.  MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS , 2008 .

[76]  Folkers Eduardo Rojas Heat extraction for the CSPonD thermal storage unit , 2011 .

[77]  A. Teja,et al.  A rough hard-sphere model for the thermal conductivity of molten salts , 1992 .

[78]  John W. Kelton,et al.  Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants , 2004 .

[79]  George J. Janz Molten Salts Handbook , 1967 .

[80]  Akiba Segal,et al.  Solar ground reformer , 2003 .

[81]  Alexander Mitsos,et al.  Site selection for hillside central receiver solar thermal plants , 2011 .

[82]  S. Kou,et al.  Three-dimensional convection in laser melted pools , 1986 .

[83]  R. B. Briggs,et al.  Molten-Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964 , 1964 .

[84]  W. Hovis,et al.  Infrared spectral reflectance of some common minerals. , 1966, Applied optics.

[85]  R. Diver Receiver/Reactor Concepts for Thermochemical Transport of Solar Energy , 1987 .

[86]  J. Ready LIA handbook of Laser materials processing , 2001 .

[87]  Stefano Passerini Optical and chemical properties of molten salt mixtures for use in high temperature power systems , 2010 .

[88]  M. Ozisik Heat Transfer: A Basic Approach , 1984 .

[89]  C. W. Matthews,et al.  Report on the test of the molten-salt pump and valve loops , 1992 .

[90]  Alexander H. Slocum,et al.  A low cost high flux solar simulator , 2010 .

[91]  Jesús M. Lata,et al.  High Flux Central Receivers of Molten Salts for the New Generation of Commercial Stand-Alone Solar Power Plants , 2008 .

[92]  Heat Treating,et al.  An Introduction to SALT BATH HEAT TREATING , 2000 .

[93]  B. Gebhart,et al.  Laminar plume interactions , 1975, Journal of Fluid Mechanics.

[94]  Sawat Paitoonsurikarn,et al.  Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver , 2004 .

[95]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[96]  Vaclav Dostal,et al.  A Supercritical CO{sub 2} Cycle- a Promising Power Conversion System for Generation IV Reactors , 2006 .

[97]  Arlon J. Hunt,et al.  A new solar simulator to study high temperature solid-state reactions with highly concentrated radiation , 1991 .

[98]  A. U. Seybolt Internal oxidation in heat-resisting stainless steels caused by presence of halides , 1970 .

[99]  R. Ballinger,et al.  Diffusional stability of ferritic–martensitic steel composite for service in advanced lead–bismuth cooled nuclear reactors , 2010 .

[100]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[101]  E. Merle-Lucotte,et al.  Les applications des sels liquides et les réacteurs à sels fondus , 2007 .

[102]  Ari Rabl,et al.  Tower reflector for solar power plant , 1976 .

[103]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[104]  Aldo Steinfeld,et al.  A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research , 2003 .

[105]  T. Tracey,et al.  One MWth bench model cavity receiver steam generator , 1976 .

[106]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .

[107]  S. Sablani,et al.  Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems☆ , 2002 .

[108]  Aldo Steinfeld,et al.  Optimum aperture size and operating temperature of a solar cavity-receiver , 1993 .

[109]  C. T. Schafer,et al.  Status report on a high temperature solar energy system , 1974 .

[110]  J. Hunt,et al.  Time-dependent plumes and jets with decreasing source strengths , 2006, Journal of Fluid Mechanics.