Febrile seizures and temporal lobe epileptogenesis

Febrile seizures (FS) are a common neurological disorder that affects children. Simple FS are thought to be benign but experimental and clinical evidence support that the risk of developing epilepsy after FS increases if the FS are prolonged and the brain is abnormal. In addition, prolonged FS (PFS) have many deleterious long-term effects characterized mainly in the hippocampus but may involve the whole brain and that prompt abortive treatment of PFS may prevent some of the adverse effects. This review focuses on some of the key factors involved in the generation of FS, factors leading to PFS and potential mechanisms and functional correlates leading to temporal lobe epilepsy (TLE).

[1]  A. Galaburda,et al.  The Development of Induced Cerebrocortical Microgyria in the Rat , 1992, Journal of neuropathology and experimental neurology.

[2]  J. Feit,et al.  Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats-contribution to the problems of morphological development and developmental period of cerebral microgyria , 1977, Acta Neuropathologica.

[3]  K M Jacobs,et al.  Focal epileptogenesis in a rat model of polymicrogyria. , 1999, Journal of neurophysiology.

[4]  C. Saper,et al.  The neurologic basis of fever. , 1994, The New England journal of medicine.

[5]  N. Sano,et al.  Hyperthermia-induced seizures with a servo system: Neurophysiological roles of age, temperature elevation rate and regional GABA content in the rat , 1990, Brain and Development.

[6]  Andreas Schulze-Bonhage,et al.  Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. , 2006, Brain : a journal of neurology.

[7]  I. Najm,et al.  Altered Glutamate Receptor—Transporter Expression and Spontaneous Seizures in Rats Exposed to Methylazoxymethanol in Utero , 2007, Epilepsia.

[8]  F. Knudsen Febrile seizures — treatment and outcome , 1996, Brain and Development.

[9]  T. Holford,et al.  Seizures with Fever After Unprovoked Seizures: An Analysis in Children Followed from the Time of a First Febrile Seizure , 1998, Epilepsia.

[10]  R. Kaji,et al.  Increased Frequency of Interleukin‐1β‐511T Allele in Patients with Temporal Lobe Epilepsy, Hippocampal Sclerosis, and Prolonged Febrile Convulsion , 2003, Epilepsia.

[11]  L. Carmant,et al.  The pathological basis of temporal lobe epilepsy in childhood , 2003, Neurology.

[12]  Y. Ben-Ari,et al.  Abnormal Connections in the Malformed Cortex of Rats with Prenatal Treatment with Methylazoxymethanol May Support Hyperexcitability , 1999, Developmental Neuroscience.

[13]  Laurent Descarries,et al.  Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion , 2008, Neurobiology of Disease.

[14]  J. Cavazos,et al.  Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions , 1998, Annals of neurology.

[15]  M. Matsuo,et al.  Increased IL-1beta production from dsRNA-stimulated leukocytes in febrile seizures. , 2006, Pediatric neurology.

[16]  T. Freund,et al.  Long-Term Plasticity of Endocannabinoid Signaling Induced by Developmental Febrile Seizures , 2003, Neuron.

[17]  Q. Pittman,et al.  Lipopolysaccharide‐induced Febrile Convulsions in the Rat: Short‐term Sequelae , 2004, Epilepsia.

[18]  N. Sano,et al.  Electroencephalographic Study of Rat Hyperthermic Seizures , 1991, Epilepsia.

[19]  D. Hesdorffer,et al.  Phenomenology of prolonged febrile seizures , 2008, Neurology.

[20]  A. Schleicher,et al.  Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABAA and GABAB receptors , 1998, The European journal of neuroscience.

[21]  James R. MacFall,et al.  Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. , 2008, AJR. American journal of roentgenology.

[22]  J. Engel Mesial Temporal Lobe Epilepsy: What Have We Learned? , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[23]  T. Baram,et al.  Seizure-Induced Neuronal Injury: Vulnerability to Febrile Seizures in an Immature Rat Model , 1998, The Journal of Neuroscience.

[24]  S. Moshé,et al.  Neuronal Migration Disorders Increase Susceptibility to Hyperthermia‐Induced Seizures in Developing Rats , 1996, Epilepsia.

[25]  G. Holmes,et al.  Effects of hyperthermia and continuous hippocampal stimulation on the immature and adult brain , 1999, Brain and Development.

[26]  J. Dobbing,et al.  Comparative aspects of the brain growth spurt. , 1979, Early human development.

[27]  T. Hara,et al.  Interleukin‐10 is associated with resistance to febrile seizures: Genetic association and experimental animal studies , 2009, Epilepsia.

[28]  G. SadleirLynette,et al.  Febrile seizures , 2007 .

[29]  N. Lanerolle,et al.  The Neuropathology of Hyperthermic Seizures in the Rat , 1999, Epilepsia.

[30]  S. Berkovic,et al.  Epilepsies in twins: Genetics of the major epilepsy syndromes , 1998, Annals of neurology.

[31]  S. Berkovic,et al.  Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21. , 1996, Journal of medical genetics.

[32]  Lionel Carmant,et al.  Freeze Lesion–Induced Focal Cortical Dysplasia Predisposes to Atypical Hyperthermic Seizures in the Immature Rat , 2004, Epilepsia.

[33]  F Cendes,et al.  Frequency and characteristics of dual pathology in patients with lesional epilepsy , 1995, Neurology.

[34]  I. Scheffer,et al.  Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. , 1997, Brain : a journal of neurology.

[35]  Q. Pittman,et al.  Causal Links between Brain Cytokines and Experimental Febrile Convulsions in the Rat , 2005, Epilepsia.

[36]  F. Pociot,et al.  A Taql polymorphism in the human interleukin‐1β (IL‐1β) gene correlates with IL‐1β secretion in vitro , 1992 .

[37]  A. Galanopoulou Developmental Patterns in the Regulation of Chloride Homeostasis and GABAA Receptor Signaling by Seizures , 2007, Epilepsia.

[38]  A. Galaburda,et al.  The neuroprotective effects of MK-801 on the induction of microgyria by freezing injury to the newborn rat neocortex , 1995, Neuroscience.

[39]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[40]  G. Holmes,et al.  Cognitive dysfunction after experimental febrile seizures , 2009, Experimental Neurology.

[41]  H. Epstein,et al.  Rodent brain growth stages: an analytical review. , 1977, Biology of the neonate.

[42]  L. Velíšek,et al.  Developmental aspects of the basal ganglia and therapeutic perspectives. , 2002, Epileptic disorders : international epilepsy journal with videotape.

[43]  K. Mackie,et al.  Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis , 2006, Nature Medicine.

[44]  D. Prince,et al.  Effects of neonatal freeze lesions on expression of parvalbumin in rat neocortex. , 1998, Cerebral cortex.

[45]  J. Ellenberg,et al.  Predictors of epilepsy in children who have experienced febrile seizures. , 1976, The New England journal of medicine.

[46]  Pathogenic Role of Glutamate in Hyperthermia‐Induced Seizures , 1993, Epilepsia.

[47]  T. Baram,et al.  Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated (HCN) channels , 2008, Neurobiology of Disease.

[48]  R. McLachlan,et al.  Febrile convulsions in selected large families: a single‐major‐locus mode of inheritance? , 1997, Developmental medicine and child neurology.

[49]  E. Schiøttz-Christensen,et al.  GENETIC FACTORS IN FEBRILE CONVULSIONS An Investigation of 64 Same‐Sexed Twin Pairs , 1972, Acta neurologica Scandinavica.

[50]  T. Hara,et al.  Genetic susceptibility to simple febrile seizures: Interleukin-1β promoter polymorphisms are associated with sporadic cases , 2005, Neuroscience Letters.

[51]  J. Aicardi,et al.  Consequences of status epilepticus in infants and children. , 1983, Advances in neurology.

[52]  Lynette G Sadleir,et al.  Febrile seizures , 2007, BMJ : British Medical Journal.

[53]  Jacqueline A. French,et al.  Characteristics of medial temporal lobe epilepsy , 1993 .

[54]  F. Jensen,et al.  Maturational Aspects of Epilepsy Mechanisms and Consequences for the Immature Brain , 2001, Epilepsia.

[55]  J. Hablitz,et al.  Excitability changes in freeze-induced neocortical microgyria , 1998, Epilepsy Research.

[56]  T. Vesikari,et al.  Increased Interleukin‐1 (IL‐1) Production from LPS‐Stimulated Peripheral Blood Monocytes in Children with Febrile Convulsions , 1990, Acta paediatrica Scandinavica.

[57]  Yuka Suzuki,et al.  Interleukin-6 attenuates hyperthermia-induced seizures in developing rats , 2007, Brain and Development.

[58]  J. Nakayama Progress in searching for the febrile seizure susceptibility genes , 2009, Brain and Development.

[59]  A. Vezzani,et al.  The role of cytokines in the pathophysiology of epilepsy , 2008, Brain, Behavior, and Immunity.

[60]  B. Litt,et al.  Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. , 2006, Brain : a journal of neurology.

[61]  W. Nance,et al.  The occurrence of epilepsy and febrile seizures in Virginian and Norwegian twins , 1991, Neurology.

[62]  K. Kida,et al.  The influence of blood gas changes on hyperthermia-induced seizures in developing rats. , 1996, Brain research. Developmental brain research.

[63]  S. Malik,et al.  Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. , 2000, The Journal of pharmacology and experimental therapeutics.

[64]  R. Kuzniecky,et al.  Temporal lobe developmental malformations and hippocampal sclerosis , 1999, Neurology.

[65]  O W Witte,et al.  Differential Downregulation of GABAA Receptor Subunits in Widespread Brain Regions in the Freeze-Lesion Model of Focal Cortical Malformations , 2000, The Journal of Neuroscience.

[66]  L. Leung,et al.  Mechanisms of hyperthermia‐induced depression of GABAergic synaptic transmission in the immature rat hippocampus , 2008, Journal of neurochemistry.

[67]  M. Gutnick,et al.  Hyperexcitability in a model of cortical maldevelopment. , 1996, Cerebral cortex.

[68]  H. Beck,et al.  Enhanced Expression of a Specific Hyperpolarization-Activated Cyclic Nucleotide-Gated Cation Channel (HCN) in Surviving Dentate Gyrus Granule Cells of Human and Experimental Epileptic Hippocampus , 2003, The Journal of Neuroscience.

[69]  B. H. Choi,et al.  Repair and reconstruction of the cortical plate following closed cryogenic injury to the neonatal rat cerebrum , 2004, Acta Neuropathologica.

[70]  R. McLachlan,et al.  Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? , 1995, Brain : a journal of neurology.

[71]  A. Galaburda,et al.  Freezing Lesions of the Developing Rat Brain: A Model for Cerebrocortical Microgyria , 1991, Journal of neuropathology and experimental neurology.

[72]  T. Baram,et al.  Febrile seizures: an appropriate-aged model suitable for long-term studies. , 1997, Brain research. Developmental brain research.

[73]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[74]  H. Luhmann,et al.  Characterization of Neuronal Migration Disorders in Neocortical Structures: Loss or Preservation of Inhibitory Interneurons? , 2000, Epilepsia.

[75]  C. Dinarello Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed , 2004, Journal of endotoxin research.

[76]  J. Olson,et al.  Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. , 1981, Science.

[77]  A. Berg,et al.  Are febrile seizures provoked by a rapid rise in temperature? , 1993, American journal of diseases of children.

[78]  T. Babb,et al.  Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology. , 1991, Journal of neurosurgery.

[79]  Anne T. Berg,et al.  Complex Febrile Seizures , 1996, Epilepsia.

[80]  J. Oxbury,et al.  Hippocampal neuron loss in temporal lobe epilepsy: Correlation with early childhood convulsions , 1987, Annals of neurology.

[81]  Xinhuai Liu,et al.  Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats , 2007, Neurobiology of Disease.

[82]  William H Theodore,et al.  Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. , 2003, Archives of neurology.

[83]  Pablo Lema,et al.  Febrile seizures in the predisposed brain: A new model of temporal lobe epilepsy , 2005, Annals of neurology.

[84]  W H Theodore,et al.  Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures , 1999, Neurology.

[85]  I. Ferrer,et al.  Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci , 1994, Journal of the Neurological Sciences.

[86]  T. Hara,et al.  Interleukin-1β enhances susceptibility to hyperthermia-induced seizures in developing rats , 2009, Seizure.

[87]  L. Velíšek,et al.  Age‐Dependent Consequences of Status Epilepticus: Animal Models , 2007, Epilepsia.

[88]  S. Moshé,et al.  Epileptogenesis and the Immature Brain , 1987, Epilepsia.

[89]  C L Galli,et al.  Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases , 2003, The Journal of Neuroscience.