Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode Performance

Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. It has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

[1]  Stefano Passerini,et al.  Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder , 2014 .

[2]  S. Passerini,et al.  Polyurethane Binder for Aqueous Processing of Li-Ion Battery Electrodes , 2015 .

[3]  Claus Daniel,et al.  Superior Performance of LiFePO4 Aqueous Dispersions via Corona Treatment and Surface Energy Optimization , 2012 .

[4]  Alain Mauger,et al.  Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O , 2011 .

[5]  Chia‐Chen Li,et al.  A novel and efficient water-based composite binder for LiCoO2 cathodes in lithium-ion batteries , 2007 .

[6]  Claus Daniel,et al.  Materials processing for lithium-ion batteries , 2011 .

[7]  S. Passerini,et al.  Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries , 2011 .

[8]  Chia‐Chen Li,et al.  Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes , 2013 .

[9]  Claus Daniel,et al.  Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[11]  Dennis W. Dees,et al.  Investigations on high energy lithium-ion batteries with aqueous binder , 2013 .

[12]  Claus Daniel,et al.  FINAL REPORT: Transformational electrode drying process , 2013 .

[13]  S. Bodoardo,et al.  Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector , 2014 .

[14]  K. Zaghib,et al.  LiFePO4 water-soluble binder electrode for Li-ion batteries , 2007 .

[15]  Chia-Chen Li,et al.  Improvements of dispersion homogeneity and cell performance of aqueous-processed LiCoO2 cathodes by using dispersant of PAA-NH4 , 2006 .

[16]  Claus Daniel,et al.  Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. , 2013, Journal of colloid and interface science.

[17]  Claus Daniel,et al.  Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO4 Cathode Dispersions and Polyethyleneimine Dispersant , 2013 .

[18]  W. Bauer,et al.  Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for manufacturing lithium ion battery cathodes , 2014, Bulletin of Materials Science.

[19]  Karim Zaghib,et al.  Aging of LiFePO4 upon exposure to H2O , 2008 .

[20]  D. Guyomard,et al.  Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes , 2010 .

[21]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[22]  Chia-Chen Li,et al.  Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO4 Cathodes , 2010 .

[23]  K. Ahn,et al.  The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries , 2015 .