Topotactically induced oxygen vacancy order in nickelate single crystals

The strong structure-property coupling in rare-earth nickelates has spurred the realization of new quantum phases in rapid succession. Recently, topotactic transformations have provided a new platform for the controlled creation of oxygen vacancies and, therewith, for the exploitation of such coupling in nickelates. Here, we report the emergence of oxygen vacancy ordering in Pr$_{0.92}$Ca$_{0.08}$NiO$_{2.75}$ single crystals obtained via a topotactic reduction of the perovskite phase Pr$_{0.92}$Ca$_{0.08}$NiO$_{3}$, using CaH$_2$ as the reducing agent. We unveil a brownmillerite-like ordering pattern of the vacancies by high-resolution scanning transmission electron microscopy, with Ni ions in alternating square-pyramidal and octahedral coordination along the pseudocubic [100] direction. Furthermore, we find that the crystal structure acquires a high level of internal strain, where wavelike modulations of polyhedral tilts and rotations accommodate the large distortions around the vacancy sites. Our results suggest that atomic-resolution electron microscopy is a powerful method to locally resolve unconventional crystal structures that result from the topotactic transformation of complex oxide materials.

[1]  L. Kourkoutis,et al.  Geometric frustration of Jahn–Teller order in the infinite-layer lattice , 2023, Nature.

[2]  S. Ramanathan,et al.  Carrier Doping Physics of Rare Earth Perovskite Nickelates RENiO3 , 2022, Frontiers in Physics.

[3]  M. Dean,et al.  Soft X-Ray Spectroscopy of Low-Valence Nickelates , 2021, Frontiers in Physics.

[4]  M. Isobe,et al.  Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates , 2021, Science advances.

[5]  Xinmao Yin,et al.  Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films , 2021, Science advances.

[6]  L. Kourkoutis,et al.  Nickelate Superconductivity without Rare‐Earth Magnetism: (La,Sr)NiO2 , 2021, Advanced materials.

[7]  Y. Mai,et al.  Direct observation of nanoscale dynamics of ferroelectric degradation , 2021, Nature Communications.

[8]  H. Li,et al.  Two superconducting components with different symmetries in Nd1-xSrxNiO2 films , 2020, 2006.13123.

[9]  L. Kourkoutis,et al.  A superconducting praseodymium nickelate with infinite layer structure. , 2020, Nano letters.

[10]  L. Kourkoutis,et al.  Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates , 2020, Proceedings of the National Academy of Sciences.

[11]  Philip D. Plowright Front , 2019, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[12]  Xiyu Zhu,et al.  Absence of superconductivity in bulk Nd1−xSrxNiO2 , 2019, Communications Materials.

[13]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[14]  J. Mitchell,et al.  High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 , 2019, Crystals.

[15]  J. Triscone,et al.  Thickness-Dependent Perovskite Octahedral Distortions at Heterointerfaces , 2019, Nano letters.

[16]  Z. Zhong,et al.  Complex magnetic order in nickelate slabs , 2018, Nature Physics.

[17]  J. Íñiguez,et al.  Rare-earth nickelates RNiO3: thin films and heterostructures , 2018, Reports on progress in physics. Physical Society.

[18]  G. Rignanese,et al.  Statistical Analysis of Coordination Environments in Oxides , 2017 .

[19]  J. Íñiguez,et al.  Structurally triggered metal-insulator transition in rare-earth nickelates , 2017, Nature Communications.

[20]  Sebastiaan van Dijken,et al.  Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3 , 2017, Nature Communications.

[21]  T. Kundu,et al.  Transport properties and metal–insulator transition in oxygen deficient LaNiO3: a density functional theory study , 2016 .

[22]  S. Middey,et al.  Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates , 2016, 1606.09291.

[23]  T. Kundu,et al.  Oxygen vacancy induced metal-insulator transition in LaNiO3 , 2016 .

[24]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[25]  H.-U. Habermeier,et al.  Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices , 2011, Science.

[26]  Gustau Catalan,et al.  Progress in perovskite nickelate research , 2008 .

[27]  A. Manthiram,et al.  Factors influencing the stabilization of Ni+ in perovskite-related oxides , 1999 .

[28]  S. Kikkawa,et al.  Reduction of the perovskite-type LnNiO3 (Ln=Pr, Nd) to Ln3Ni3O7 with monovalent nickel ions , 1994 .

[29]  Z. Wang Dislocation contrast in high-angle hollow-cone dark-field TEM , 1993 .

[30]  L. A. Boatner,et al.  Chemically sensitive structure-imaging with a scanning transmission electron microscope , 1988, Nature.

[31]  J. Goodenough,et al.  Dependence of the structure and electronic state of SrFeOx (2.5 ≤ x ≤ 3) on composition and temperature , 1988 .

[32]  M. Vallet‐Regí,et al.  An electron diffraction study of new phases in the LaNiO3−x system , 1988 .

[33]  C. Rao,et al.  A convenient route for the synthesis of complex metal oxides employing solid-solution precursors , 1984 .

[34]  M. E. Leonowicz,et al.  Structure determination of Ca2MnO4 and Ca2MnO3.5 by X-ray and neutron methods , 1982 .

[35]  M. E. Leonowicz,et al.  CaMnO2.5 and Ca2MnO3.5: New oxygen-defect perovskite-type oxides , 1982 .

[36]  M. Treacy,et al.  Z contrast of platinum and palladium catalysts , 1978 .

[37]  C. Koch Determination of core structure periodicity and point defect density along dislocations , 2002 .

[38]  J A Alonso,et al.  A structural and magnetic study of the defect perovskite from high-resolution neutron diffraction data , 1997 .

[39]  C. Garner Transition metal compounds , 1976, Nature.