Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation

[1]  D. Morrison,et al.  Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding , 2021, bioRxiv.

[2]  J. Glover,et al.  A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis , 2020, Scientific Reports.

[3]  G. Fischer,et al.  Drugging all RAS isoforms with one pocket. , 2020, Future medicinal chemistry.

[4]  D. Esposito,et al.  KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation , 2020, bioRxiv.

[5]  K. Westover,et al.  KRASQ61H Preferentially Signals through MAPK in a RAF Dimer-Dependent Manner in Non–Small Cell Lung Cancer , 2020, Cancer Research.

[6]  Carlos González,et al.  Heterochromatin protein 1α interacts with parallel RNA and DNA G-quadruplexes , 2019, Nucleic acids research.

[7]  D. Esposito,et al.  Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. , 2019, Molecular cell.

[8]  Astrid Gall,et al.  Ensembl 2020 , 2019, Nucleic Acids Res..

[9]  C. Burd,et al.  Rapid Generation of Primary Murine Melanocyte and Fibroblast Cultures. , 2019, Journal of visualized experiments : JoVE.

[10]  Christopher T. Saunders,et al.  Strelka2: fast and accurate calling of germline and somatic variants , 2018, Nature Methods.

[11]  Robert L. Judson,et al.  Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. , 2018, Cancer cell.

[12]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[13]  E. Cuppen,et al.  MutationalPatterns: comprehensive genome-wide analysis of mutational processes , 2017, bioRxiv.

[14]  T. Oberyszyn,et al.  Ultraviolet radiation accelerates NRas‐mutant melanomagenesis: A cooperative effect blocked by sunscreen , 2017, Pigment cell & melanoma research.

[15]  J. Emile,et al.  Variation of mutant allele frequency in NRAS Q61 mutated melanomas , 2017, BMC Dermatology.

[16]  Frank McCormick,et al.  RAS Proteins and Their Regulators in Human Disease , 2017, Cell.

[17]  Carla Mattos,et al.  The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects , 2017, The Journal of Biological Chemistry.

[18]  C. Der,et al.  The role of wild type RAS isoforms in cancer. , 2016, Seminars in cell & developmental biology.

[19]  M. Herlyn,et al.  Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma , 2016, Journal of Cell Communication and Signaling.

[20]  E. Ranheim,et al.  The ability of endogenous Nras oncogenes to initiate leukemia is codon-dependent , 2016, Leukemia.

[21]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[22]  E. Assenat,et al.  KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma , 2016, Clinical and Translational Gastroenterology.

[23]  E. Ranheim,et al.  Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis , 2016, Leukemia.

[24]  Ruth Nussinov,et al.  The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B , 2016, Scientific Reports.

[25]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[26]  Xiaolin Nan,et al.  Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway , 2015, Proceedings of the National Academy of Sciences.

[27]  Qing-Yu He,et al.  DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis , 2015, Bioinform..

[28]  David B. Darr,et al.  Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. , 2014, Cancer discovery.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  Thomas M. Keane,et al.  The mutational landscapes of genetic and chemical models of Kras-driven lung cancer , 2014, Nature.

[31]  Michael J. Parsons,et al.  Differential in vivo tumorigenicity of diverse KRAS mutations in vertebrate pancreas: A comprehensive survey , 2014, Oncogene.

[32]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[33]  James Downing,et al.  Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation. , 2013, Cancer discovery.

[34]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[35]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[36]  Zuyao Yang,et al.  KRAS p.G13D mutation and codon 12 mutations are not created equal in predicting clinical outcomes of cetuximab in metastatic colorectal cancer , 2013, Cancer.

[37]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[38]  Ronglai Shen,et al.  Molecular Epidemiology of EGFR and KRAS Mutations in 3,026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-Related KRAS-Mutant Cancers , 2012, Clinical Cancer Research.

[39]  A. Balmain,et al.  Interactions Between Wildtype and Mutant Ras Genes in Lung and Skin Carcinogenesis , 2012, Oncogene.

[40]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[41]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[42]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[43]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[44]  D. Bar-Sagi,et al.  Sos-mediated cross activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis , 2012, Nature Communications.

[45]  A. Bardelli,et al.  Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. , 2010, JAMA.

[46]  David W. Ritchie,et al.  Ultra-fast FFT protein docking on graphics processors , 2010, Bioinform..

[47]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[48]  R. Trammell,et al.  Identification of markers for imminent death in mice used in longevity and aging research. , 2010, Journal of the American Association for Laboratory Animal Science : JAALAS.

[49]  J. Reis-Filho,et al.  Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF , 2010, Cell.

[50]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[51]  C. Sander,et al.  V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway , 2009, Proceedings of the National Academy of Sciences.

[52]  A. Sweet-Cordero,et al.  Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon , 2008, Nature Genetics.

[53]  D. van der Spoel,et al.  A temperature predictor for parallel tempering simulations. , 2008, Physical chemistry chemical physics : PCCP.

[54]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[55]  A. Laude,et al.  Ras proteins: paradigms for compartmentalised and isoform-specific signalling , 2007, Cellular and Molecular Life Sciences.

[56]  R. Jaenisch,et al.  Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways. , 2007, Blood.

[57]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[58]  M. Cascante,et al.  K-ras Asp12 mutant neither interacts with Raf, nor signals through Erk and is less tumorigenic than K-ras Val12. , 2006, Carcinogenesis.

[59]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[60]  W. Kolch,et al.  Regulation and Role of Raf-1/B-Raf Heterodimerization , 2006, Molecular and Cellular Biology.

[61]  Ming You,et al.  Wildtype Kras2 can inhibit lung carcinogenesis in mice , 2001, Nature Genetics.

[62]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[63]  R. Klemke,et al.  Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce Transformation, and Stimulate Cell Motility* , 1999, The Journal of Biological Chemistry.

[64]  J. Hancock,et al.  Ras Isoforms Vary in Their Ability to Activate Raf-1 and Phosphoinositide 3-Kinase* , 1998, The Journal of Biological Chemistry.

[65]  T. Darden,et al.  Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study. , 1994, Biochemistry.

[66]  A. Balmain,et al.  Genetic changes in skin tumor progression: Correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7 , 1990, Cell.

[67]  D. Lowy,et al.  Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. , 1988, Science.

[68]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[69]  Yulei Wu,et al.  A Comprehensive Survey , 2020 .

[70]  D. Morrison,et al.  Ras-Mediated Activation of the Raf Family Kinases. , 2019, Cold Spring Harbor perspectives in medicine.

[71]  Nicole M. Baker,et al.  Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. , 2019, Cancer discovery.

[72]  J. J. Gallardo,et al.  An experimental and theoretical study , 2015 .

[73]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[74]  K. Kinzler,et al.  A simplified system for generating recombinant adenoviruses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .