Moments Preserving and high-resolution Semi-Lagrangian Advection Scheme

We present a forward semi-Lagrangian numerical method for systems of transport equations able to advect smooth and discontinuous fields with high-order accuracy. The numerical scheme is composed of an integration of the transport equations along the trajectory of material elements in a moving grid and a reconstruction of the fields in a reference regular mesh using a non-linear mapping and adaptive moment-preserving interpolations. The non-linear mapping allows for the arbitrary deformation of material elements. Additionally, interpolations can represent discontinuous fields using adaptive-order interpolation near jumps detected with a slope-limiter function. Due to the large number of operations during the interpolations, a serial implementation of this scheme is computationally expensive. The scheme has been accelerated in many-core parallel architectures using a thread per grid node and parallel data gathers. We present a series of tests that prove the scheme to be an attractive option for simulating advection equations in multi-dimensions with high accuracy.

[1]  A. McDonald A Semi-Lagrangian and Semi-Implicit Two Time-Level Integration Scheme , 1986 .

[2]  Dmitri Kuzmin,et al.  Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..

[3]  Michael Fey Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen , 1993 .

[4]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[5]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .

[6]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952, Tellus A: Dynamic Meteorology and Oceanography.

[7]  P. Roache A flux-based modified method of characteristics , 1992 .

[8]  Srinath Vadlamani,et al.  The particle-continuum method: an algorithmic unification of particle-in-cell and continuum methods , 2004, Comput. Phys. Commun..

[9]  Takashi Yabe,et al.  Constructing exactly conservative scheme in a non-conservative form , 2000 .

[10]  T. N. Krishnamurti,et al.  Numerical Integration of Primitive Equations by a Quasi-Lagrangian Advective Scheme , 1962 .

[11]  Lance M. Leslie,et al.  An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .

[12]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[13]  A. Robert A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .

[14]  Philip J. Rasch,et al.  The sensitivity of a general circulation model climate to the moisture transport formulation , 1991 .

[15]  Harold Ritchie,et al.  Application of the Semi-Lagrangian Method to a Spectral Model of the Shallow Water Equations , 1988 .

[16]  Ronald Fedkiw,et al.  An unconditionally stable fully conservative semi-Lagrangian method , 2010, J. Comput. Phys..

[17]  T. Yabe,et al.  Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation , 2001 .

[18]  D. Purnell Solution of the Advective Equation by Upstream Interpolation with a Cubic Spline , 1976 .

[19]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952 .

[20]  K. W. Morton,et al.  Generalised galerkin methods for hyperbolic problems , 1985 .

[21]  A. Wiin-Nielsen,et al.  On the Application of Trajectory Methods in Numerical Forecasting , 1959 .

[22]  Janusz A. Pudykiewicz,et al.  Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model , 1989 .

[23]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[24]  Clive Temperton,et al.  An Efficient Two‐Time‐Level Semi‐Lagrangian Semi‐Implicit Integration Scheme , 1987 .

[25]  J. Eastwood The stability and accuracy of EPIC algorithms , 1987 .

[26]  High-order semi-Lagrangian numerical method for large-eddy simulations of reacting flows , 2007 .

[27]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[28]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[29]  Andrew J. Majda,et al.  Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances , 1999 .

[30]  Jeffrey S. Scroggs,et al.  A forward-trajectory global semi-Lagrangian transport scheme , 2003 .

[31]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[32]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[33]  L. Leslie,et al.  Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .

[34]  J. S. Sawyer A semi-Lagrangian method of solving the vorticity advection equation , 1963 .

[35]  T. Yabe,et al.  Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique , 2001 .

[36]  Harold Ritchie,et al.  Eliminating the Interpolation Associated with the Semi-Lagrangian Scheme , 1986 .

[37]  Monique Tanguay,et al.  A Semi-implicit Send-Lagrangian Fully Compressible Regional Forecast Model , 1990 .

[38]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[39]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[40]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[41]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..