HPV positive neuroendocrine cervical cancer cells are dependent on Myc but not E6/E7 viral oncogenes

[1]  A. Fersht,et al.  Propagation of aggregated p53: Cross-reaction and coaggregation vs. seeding , 2015, Proceedings of the National Academy of Sciences.

[2]  X. Fang,et al.  Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism , 2015, Nature Genetics.

[3]  E. Mardis,et al.  AACR Cancer Progress Report 2014 , 2014, Clinical Cancer Research.

[4]  Karen H. Vousden,et al.  Mutant p53 in Cancer: New Functions and Therapeutic Opportunities , 2014, Cancer cell.

[5]  Trevor J Pugh,et al.  Landscape of genomic alterations in cervical carcinomas , 2013, Nature.

[6]  T. Ried,et al.  Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability , 2014, Genome research.

[7]  A. Shad,et al.  Use of reprogrammed cells to identify therapy for respiratory papillomatosis. , 2012, The New England journal of medicine.

[8]  Lars Jansen,et al.  Non-Random Integration of the HPV Genome in Cervical Cancer , 2012, PloS one.

[9]  Chris Albanese,et al.  ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. , 2012, The American journal of pathology.

[10]  P. Graves,et al.  p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. , 2012, Archives of biochemistry and biophysics.

[11]  D. DiMaio,et al.  Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation. , 2012, Virology.

[12]  P. Gehrig,et al.  Neuroendocrine tumors of the gynecologic tract: A Society of Gynecologic Oncology (SGO) clinical document. , 2011, Gynecologic oncology.

[13]  Cary A Moody,et al.  Human papillomavirus oncoproteins: pathways to transformation , 2010, Nature Reviews Cancer.

[14]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[15]  M. Olivier,et al.  TP 53 Mutations in Human Cancers : Origins , Consequences , and Clinical Use , 2009 .

[16]  Thomas Ried,et al.  Spectral karyotyping analysis of human and mouse chromosomes , 2006, Nature Protocols.

[17]  F. Radvanyi,et al.  MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors , 2006, Oncogene.

[18]  Kevin Gaston,et al.  E2 Proteins from High- and Low-Risk Human Papillomavirus Types Differ in Their Ability To Bind p53 and Induce Apoptotic Cell Death , 2006, Journal of Virology.

[19]  N. Yaegashi,et al.  Small Cell Neuroendocrine Carcinomas of the Uterine Cervix: A Histological, Immunohistochemical, and Molecular Genetic Study , 2004, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists.

[20]  David I. Smith,et al.  Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma , 2003, Oncogene.

[21]  M. Hoeckel,et al.  A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques , 2003, Oncogene.

[22]  L. Clegg,et al.  Endocrine tumors of the uterine cervix: incidence, demographics, and survival with comparison to squamous cell carcinoma. , 2003, Gynecologic oncology.

[23]  Stella Pelengaris,et al.  c-MYC: more than just a matter of life and death , 2002, Nature Reviews Cancer.

[24]  J. Milner,et al.  Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference , 2002, Oncogene.

[25]  D. DiMaio,et al.  Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Howley,et al.  Repression of the Integrated Papillomavirus E6/E7 Promoter Is Required for Growth Suppression of Cervical Cancer Cells , 2000, Journal of Virology.

[27]  M. von Knebel Doeberitz,et al.  Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. , 1999, Cancer research.

[28]  D. Ledbetter,et al.  Multicolor Spectral Karyotyping of Human Chromosomes , 1996, Science.

[29]  T. Iwasaka,et al.  Correlation between HPV positivity and state of the p53 gene in cervical carcinoma cell lines. , 1993, Gynecologic oncology.

[30]  H. Westphal,et al.  Analysis of the p53 gene in human uterine carcinoma cell lines. , 1991, Cancer research.

[31]  K. Münger,et al.  The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Crook,et al.  p53 point mutation in HPV negative human cervical carcinoma cell lines. , 1991, Oncogene.

[33]  Pamela Cushing,et al.  Pathways to Transformation , 1998, Nature.