Estimation of Dynamic Rate Parameters in Insect Populations Undergoing Sublethal Exposure to Pesticides

Abstract With newer, more environmentally friendly and, subsequently less lethal, pesticides in use, evaluating efficacy of a pesticide now requires more than simply counting deaths after treatment. A discrete, age-structured matrix model that incorporates a species’ life history traits (such as birth rate, death rate and fecundity) has previously been used by ecologists. This model will be presented and discussed along with an alternative continuous, age-structured model which offers significant advantage in considering sublethal damage. We use this continuous model to estimate time-dependent mortality parameters in an ordinary least-squares technique. Confidence intervals are given and results from tests for statistical significance of added parameters are presented.

[1]  H. Banks,et al.  Mathematical and Experimental Modeling of Physical and Biological Processes , 2001 .

[2]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[3]  R. Scheaffer,et al.  Mathematical Statistics with Applications. , 1992 .

[4]  S. Wood,et al.  Obtaining birth and mortality patterns from structured population trajectories. , 1994, Ecological monographs.

[5]  S. Wood Spline models of biological population dynamics: how to estimate mortality rates for stage structured populations with dimorphic life histories. , 1994, IMA journal of mathematics applied in medicine and biology.

[6]  James W. Sinko,et al.  A New Model For Age‐Size Structure of a Population , 1967 .

[7]  Uno Wennergren,et al.  MODELING LONG-TERM EFFECTS OF PESTICIDES ON POPULATIONS: BEYOND JUST COUNTING DEAD ANIMALS , 2000 .

[8]  J. Stark,et al.  Lethal and sublethal effects of the neem insecticide formulation, ‘Margosan‐O’, on the pea aphid , 1994 .

[9]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[10]  Shandelle M. Henson Leslie matrix models as “stroboscopic snapshots” of McKendrick PDE models , 1998 .

[11]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[12]  Uno Wennergren,et al.  Can Population Effects of Pesticides Be Predicted from Demographic Toxicological Studies , 1995 .

[13]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[14]  U. Wennergren,et al.  Population growth and structure in a variable environment , 1993, Oecologia.

[15]  W. Bowen,et al.  Philadelphia , 1892 .

[16]  Roger Vargas,et al.  How risky is risk assessment: the role that life history strategies play in susceptibility of species to stress. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Wood,et al.  Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord , 1996 .

[18]  Harvey Thomas Banks,et al.  Statistical methods for model comparison in parameter estimation problems for distributed systems , 1990 .

[19]  B. M. Fulk MATH , 1992 .

[20]  G. Duclos New York 1987 , 2000 .

[21]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[22]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[23]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[24]  J. Stark,et al.  Comparison of two population‐level ecotoxicological endpoints: The intrinsic (rm) and instantaneous (ri) rates of increase , 1997 .

[25]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[26]  Kendrick,et al.  Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[27]  J. Carey Applied Demography for Biologists: with Special Emphasis on Insects , 1993 .

[28]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[29]  Bradley Efron,et al.  Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap, and Other Resampling Plans , 1983 .

[30]  Simon N. Wood,et al.  Inverse Problems and Structured-Population Dynamics , 1997 .

[31]  L. Birch,et al.  The intrinsic rate of natural increase of an insect population , 1948 .

[32]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[33]  Harvey Thomas Banks,et al.  Sensitivity of dynamical systems to Banach space parameters , 2006 .

[34]  Harvey Thomas Banks,et al.  Inverse Problems for Distributed Systems: Statistical Tests and ANOVA , 1989 .

[35]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[36]  F. Stohlman,et al.  The kinetics of cellular proliferation , 1961 .

[37]  Mark Kot,et al.  Elements of Mathematical Ecology , 2001 .

[38]  J. Carey,et al.  Mortality Dynamics of Insects: General Principles Derived from Aging Research on the Mediterranean Fruit Fly (Diptera: Tephritidae) , 1999 .

[39]  E. Lehmann Elements of large-sample theory , 1998 .