Mathematical basis for a general theory of Laplacian transport towards irregular interfaces.

The theory of Laplacian transport towards and across irregular surfaces is reformulated in terms of the Dirichlet-to-Neumann operator and its spectral characteristics. This permits us to obtain an exact equivalent circuit for the impedance of a working interface of arbitrary shape. The important result is that only very few eigenmodes of this operator do govern the entire response of a macroscopic system. This property drastically simplifies the understanding of irregular or prefractal interfaces. The results can be applied in electrochemistry, physiology and chemical engineering, fields where exchange processes across surfaces with complex geometry are ubiquitous.

[1]  T. Halsey,et al.  The double-layer impedance at a rough surface : numerical results , 1993 .

[2]  B. Sapoval,et al.  Visualization of the Active Zone of an Irregular Electrode by Optical Absorption , 1997 .

[3]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[4]  Fernando Reitich,et al.  Stability of High-Order Perturbative Methods for the Computation of Dirichlet-Neumann Operators , 2001 .

[5]  Ewald R. Weibel,et al.  The pathway for oxygen : structure and function in the mammalian respiratory system , 1984 .

[6]  Sapoval General formulation of Laplacian transfer across irregular surfaces. , 1994, Physical review letters.

[7]  Halsey Frequency dependence of the double-layer impedance at a rough surface. , 1987, Physical review. A, General physics.

[8]  D. Milder,et al.  An improved formalism for electromagnetic scattering from a perfectly conducting rough surface , 1996 .

[9]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[10]  T. Pajkossy,et al.  Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes , 1985 .

[11]  G. Vojta Fractals and Disordered Systems , 1997 .

[12]  Mark E. Orazem,et al.  Measurement Models for Electrochemical Impedance Spectroscopy I . Demonstration of Applicability , 1992 .

[13]  Sapoval,et al.  Electrical response of fractal and porous interfaces. , 1988, Physical review. A, General physics.

[14]  Meakin,et al.  Equivalent-circuit, scaling, random-walk simulation, and an experimental study of self-similar fractal electrodes and interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[16]  R. D. Armstrong,et al.  The effect of roughness on the impedance of the interface between a solid electrolyte and a blocking electrode , 1976 .

[17]  T. Halsey,et al.  The double layer impedance at a rough electrode : a random walk method , 1991 .

[18]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[19]  Mark E. Orazem,et al.  Application of Measurement Models to Impedance Spectroscopy III . Evaluation of Consistency with the Kramers‐Kronig Relations , 1995 .

[20]  T. Pajkossy,et al.  Diffusion to fractal surfaces , 1986 .

[21]  Liu Fractal model for the ac response of a rough interface. , 1985, Physical review letters.

[22]  New simple properties of a few irregular systems , 2005 .

[23]  Bernard Sapoval,et al.  Smaller is better—but not too small: A physical scale for the design of the mammalian pulmonary acinus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Spectral properties of the Brownian self-transport operator , 2002 .

[25]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[26]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[27]  B. Sapoval,et al.  Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.

[28]  P. Guidotti A new first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D , 2003 .

[29]  B. Sapoval,et al.  Can one hear the shape of an electrode? II. Theoretical study of the Laplacian transfer , 1999 .

[30]  Albert Gjedde,et al.  The pathway for oxygen in brain. , 2003, APMIS. Supplementum.

[31]  T. Halsey,et al.  The double layer impedance at a rough surface: Theoretical results , 1992 .

[32]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[33]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[34]  Bernard Sapoval,et al.  Fractal electrodes and constant phase angle response: Exact examples and counter examples , 1987 .

[35]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[36]  Michel Keddam,et al.  Impedance of fractal interfaces : new data on the Von Koch model. , 1988 .

[37]  M. Coppens The effect of fractal surface roughness on diffusion and reaction in porous catalysts - From fundamentals to practical applications , 1999 .

[38]  T. Halsey,et al.  Random Walks and the Double-Layer Impedance , 1991 .

[39]  B. Sapoval,et al.  Diffusional screening in the human pulmonary acinus. , 2003, Journal of applied physiology.

[40]  Wayne H. Chen Linear Network Design and Synthesis , 1964 .