Fractal Models and the Structure of Materials

Science often advances through the introdction of new ideas which simplify the understanding of complex problems. Materials science is no exception to this rule. Concepts such as nucleation in crystal growth and spinodal decomposition, for example, have played essential roles in the modern understanding of the structure of materials. More recently, fractal geometry has emerged as an essential idea for understanding the kinetic growth of disordered materials. This review will introduce the concept of fractal geometry and demonstrate its application to the understanding of the structure of materials.Fractal geometry is a natural concept used to describe random or disordered objects ranging from branched polymers to the earth's surface. Disordered materials seldom display translational or rotational symmetry so conventional crystallographic classification is of no value. These materials, however, often display “dilation symmetry,” which means they look geometrically self-similar under transformation of scale such as changing the magnification of a microscope. Surprisingly, most kinetic growth processes produce objects with self-similar fractal properties. It is now becoming clear that the origin of dilation symmetry is found in disorderly kinetic growth processes present in the formation of these materials.