p53 and stem cells: new developments and new concerns.

[1]  Yang Xu,et al.  Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. , 2010, Cell stem cell.

[2]  O. Gaidarenko,et al.  Transcription activity is required for p53-dependent tumor suppression , 2009, Oncogene.

[3]  Wenbo Zhou,et al.  Adenoviral Gene Delivery Can Reprogram Human Fibroblasts to Induced Pluripotent Stem Cells , 2009, Stem cells.

[4]  Justin C. Grindley,et al.  Tumour-initiating cells: challenges and opportunities for anticancer drug discovery , 2009, Nature Reviews Drug Discovery.

[5]  R. Weinberg,et al.  Cancer stem cells: mirage or reality? , 2009, Nature Medicine.

[6]  Manuel Serrano,et al.  A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity , 2009, Nature.

[7]  M. Blasco,et al.  The Ink4/Arf locus is a barrier for iPS cell reprogramming , 2009, Nature.

[8]  J. Utikal,et al.  Immortalization eliminates a roadblock during cellular reprogramming into iPS cells , 2009, Nature.

[9]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[10]  Ge Guo,et al.  Nanog Is the Gateway to the Pluripotent Ground State , 2009, Cell.

[11]  G. Wahl,et al.  Linking the p53 tumor suppressor pathway to somatic cell reprogramming , 2009, Nature.

[12]  G. Daley,et al.  A role for Lin28 in primordial germ cell development and germ cell malignancy , 2009, Nature.

[13]  Mike J. Mason,et al.  Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. , 2009, Cell stem cell.

[14]  Robert Lanza,et al.  Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. , 2009, Cell stem cell.

[15]  Wei Gu,et al.  Modes of p53 Regulation , 2009, Cell.

[16]  R. Stewart,et al.  Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences , 2009, Science.

[17]  Dong Wook Han,et al.  Generation of induced pluripotent stem cells using recombinant proteins. , 2009, Cell stem cell.

[18]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[19]  A. Trounson Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species. , 2009, Cell stem cell.

[20]  Xiaolei Yin,et al.  Two supporting factors greatly improve the efficiency of human iPSC generation. , 2008, Cell stem cell.

[21]  Yang Xu,et al.  Induction of genetic instability by gain-of-function p53 cancer mutants , 2008, Oncogene.

[22]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[23]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[24]  A. Levine,et al.  p53 regulates maternal reproduction through LIF , 2007, Nature.

[25]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[26]  T. Stiewe,et al.  The p53 family in differentiation and tumorigenesis , 2007, Nature Reviews Cancer.

[27]  E. Appella,et al.  Acetylation of Mouse p53 at Lysine 317 Negatively Regulates p53 Apoptotic Activities after DNA Damage , 2006, Molecular and Cellular Biology.

[28]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[29]  D. Herr,et al.  Ser18 and 23 phosphorylation is required for p53‐dependent apoptosis and tumor suppression , 2006, The EMBO journal.

[30]  E. Perez,et al.  New therapies in the treatment of breast cancer. , 2006, Seminars in oncology.

[31]  Wei Gu,et al.  p53 ubiquitination: Mdm2 and beyond. , 2006, Molecular cell.

[32]  D. Peeper,et al.  KLF4, p21 and context-dependent opposing forces in cancer , 2006, Nature Reviews Cancer.

[33]  A. Hart,et al.  The pluripotency homeobox gene NANOG is expressed in human germ cell tumors , 2005, Cancer.

[34]  A. Clark,et al.  Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma , 2005, Cancer.

[35]  U. Moll,et al.  Stress-induced p53 runs a transcription-independent death program. , 2005, Biochemical and biophysical research communications.

[36]  A. Strasser,et al.  Death squads enlisted by the tumour suppressor p53. , 2005, Biochemical and biophysical research communications.

[37]  Rudolf Jaenisch,et al.  Ectopic Expression of Oct-4 Blocks Progenitor-Cell Differentiation and Causes Dysplasia in Epithelial Tissues , 2005, Cell.

[38]  Ettore Appella,et al.  p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression , 2005, Nature Cell Biology.

[39]  A. Giaccia,et al.  The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality , 2005, Nature Genetics.

[40]  M. Oshimura,et al.  Generation of Pluripotent Stem Cells from Neonatal Mouse Testis , 2004, Cell.

[41]  Austin G Smith,et al.  Self-renewal of teratocarcinoma and embryonic stem cells , 2004, Oncogene.

[42]  Christian Schwager,et al.  Embryonic Stem Cell-Like Features of Testicular Carcinoma in Situ Revealed by Genome-Wide Gene Expression Profiling , 2004, Cancer Research.

[43]  S. Sell,et al.  Stem cell origin of cancer and differentiation therapy. , 2004, Critical reviews in oncology/hematology.

[44]  A. Sancar,et al.  Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. , 2004, Annual review of biochemistry.

[45]  E. Appella,et al.  Cell Type- and Promoter-specific Roles of Ser18 Phosphorylation in Regulating p53 Responses* , 2003, Journal of Biological Chemistry.

[46]  Y. Sasai,et al.  Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  M. Murakami,et al.  The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells , 2003, Cell.

[48]  J. Nichols,et al.  Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells , 2003, Cell.

[49]  Yang Xu,et al.  Regulation of p53 responses by post-translational modifications , 2003, Cell Death and Differentiation.

[50]  Stella Pelengaris,et al.  c-MYC: more than just a matter of life and death , 2002, Nature Reviews Cancer.

[51]  J. Stringer,et al.  Embryonic stem cells and somatic cells differ in mutation frequency and type , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Norio Nakatsuji,et al.  Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells , 2001, Current Biology.

[53]  E. Appella,et al.  Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  E. Appella,et al.  p53 transcriptional activity is essential for p53‐dependent apoptosis following DNA damage , 2000, The EMBO journal.

[55]  G. Wahl,et al.  A transactivation-deficient mouse model provides insights into Trp53 regulation and function , 2000, Nature Genetics.

[56]  M. Roussel,et al.  Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. , 1999, Genes & development.

[57]  G. Wahl,et al.  ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage , 1998, Current Biology.

[58]  I. Wilmut,et al.  "Viable Offspring Derived from Fetal and Adult Mammalian Cells" (1997), by Ian Wilmut et al. , 2014 .

[59]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[60]  R. Briggs,et al.  Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. , 1952, Proceedings of the National Academy of Sciences of the United States of America.