Methanol-to-hydrocarbons: catalytic materials and their behavior 1 Dedicated to my wife Wencke Ophau

The literature related to methanol-to-hydrocarbons (MTHC) technology over the past two decades has been reviewed, covering mainly the methanol-to-olefin (MTO) and methanol-to-gasoline (MTG) reactions. The work before around 1990 is briefly addressed, and the interested reader's attention is drawn to review papers published during the late 1980s summarizing the early work related to the methanol-to-hydrocarbons technology. This review focuses mainly on the chemistry and mechanism of those reactions including the catalysts involved and their behavior due to crystal size, pore architecture, acidity and reaction conditions, covering the time since around 1990. In a second review authored by F. Keil, the process related items of methanol-to-hydrocarbons technology will be summarized and discussed in the light of kinetic and reaction technology aspects.

[1]  In situ FTIR studies of methanol and dimethyl ether in ZSM-5 , 1987 .

[2]  K. G. Ione,et al.  Synthesis and Study of Properties of Zsm-II Type Silicalites of I-VIII Group Elements , 1984 .

[3]  G. Hutchings,et al.  Methanol conversion to hydrocarbons , 1988 .

[4]  S. Blaszkowski,et al.  Theoretical Study of the Mechanism of Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons , 1997 .

[5]  Ivar M. Dahl,et al.  On the reaction mechanism for propene formation in the MTO reaction over SAPO-34 , 1993 .

[6]  J. Klinowski,et al.  Adsorption complexes of methanol on zeolite ZSM-5 , 1990 .

[7]  G. Froment,et al.  Catalyst deactivation by site coverage and pore blockage: Finite rate of growth of the carbonaceous deposit , 1980 .

[8]  Z. Tvarůžková,et al.  Studies of adsorption mechanism on zeolites of the faujasite type by infrared spectroscopy. I. Adsorption of methanol on decationated X-type zeolites , 1971 .

[9]  G. Froment,et al.  Catalyst Deactivation by Active Site Coverage and Pore Blockage , 1979 .

[10]  E. Munson,et al.  Carbon monoxide is neither an intermediate nor a catalyst in MTG chemistry on zeolite HZSM-5 , 1991 .

[11]  L. Guczi,et al.  New frontiers in catalysis : proceedings of the 10th International Congress on Catalysis, Budapest, July 19-24, 1992 , 1993 .

[12]  P. Magnoux,et al.  Coking, aging, and regeneration of zeolites. III: Comparison of the deactivation modes of H-mordenite, HZSM-5, and HY during n-heptane cracking , 1987 .

[13]  G. Froment,et al.  Catalytic conversion of methanol to light alkenes on SAPO molecular sieves , 1991 .

[14]  J. Nováková,et al.  Primary reaction steps in the methanol-to-olefin transformation on zeolites , 1987 .

[15]  S. Vasudevan,et al.  Temperature programmed surface reaction studies of the methanol to gasoline (MTG) conversion over ZSM-5 , 1995 .

[16]  Clare P. Grey,et al.  An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography , 1990 .

[17]  Clarence Dayton Chang,et al.  Isomorphous substitution in zeolite frameworks: II. Catalytic properties of [B]ZSM-5 , 1985 .

[18]  S. Blaszkowski,et al.  Theoretical study of C-C bond formation in the methanol to gasoline process , 1997 .

[19]  G. Hutchings,et al.  Methanol conversion to hydrocarbons over zeolite H-ZSM-5: Comments on the formation of C4 hydrocarbons at low reaction temperatures , 1993 .

[20]  Clarence Dayton Chang,et al.  Methanol Conversion to Light Olefins , 1984, Catalysis and Surface Science.

[21]  Terry L. Marker,et al.  Economic route for natural gas conversion to ethylene and propylene , 1997 .

[22]  G. Hutchings,et al.  Methanol conversion to hydrocarbons: investigation of the possible role of carbon monoxide in the formation of the initial carbon-carbon bond , 1990 .

[23]  K. Minachev,et al.  Pentasil-Type Zeolites: Radical Formation, Activity in the Olefin Oligomerization and Aromatization, Processes of Coke Deposition , 1986 .

[24]  M. M. Wu,et al.  Conversion of methanol to hydrocarbons: II. Reaction paths for olefin formation over HZSM-5 zeolite catalyst , 1984 .

[25]  G. Klopman,et al.  Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5 , 1969 .

[26]  S. Kolboe Methanol Reactions on ZSM-5 and Other Zeolite Catalysts: Autocatalysis and Reaction Mechanism. , 1986 .

[27]  Weiguo Song,et al.  PULSE-QUENCH CATALYTIC REACTOR STUDIES REVEAL A CARBON-POOL MECHANISM IN METHANOL-TO-GASOLINE CHEMISTRY ON ZEOLITE HZSM-5 , 1998 .

[28]  C. Chang,et al.  On the existence and role of free radicals in methanol conversion to hydrocarbons over HZSM-5 I. Inhibition by NO , 1989 .

[29]  W. J. Reagan,et al.  Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts , 1979 .

[30]  N. Jaeger,et al.  Conversion of methanol to hydrocarbons over metal-zeolite catalysts , 1979 .

[31]  C. Catlow,et al.  Synthesis and characterization of a catalytically active nickel silicoaluminophosphate catalyst for the conversion of methanol to ethene , 1991 .

[32]  Incipient stratification and mixing in aerated liquid-liquid or liquid-solid mixtures , 1981 .

[33]  T. Inui Structure-Reactivity Relationships in Methanol to Olefin Conversion on Various Microporous Crystalline Catalysts , 1991 .

[34]  D. Bibby,et al.  Effects of coke formation on the acidity of ZSM-5 , 1986 .

[35]  G. Hutchings,et al.  Comments on "kinetic model for methanol conversion to olefins" with respect to methane formation at low conversion , 1987 .

[36]  T. Mole,et al.  Conversion of methanol to ethylene over ZSM-5 zeolite in the presence of deuterated water , 1982 .

[37]  L. Riekert,et al.  Formation of ethene and propene from methanol on zeolite ZSM-5. II: Preparation of finished catalysts and operation of a fixed-bed pilot plant , 1988 .

[38]  T. Inui,et al.  Considerable reduction in crystallization time in the preparation of a new type of zeolite catalyst for olefin synthesis from methanol , 1981 .

[39]  F. Fetting,et al.  Umwandlung von Methanol in kurzkettige Olefine an Zeolithen vom Erionit‐ und ZMS‐5‐Typ , 1985 .

[40]  T. Behrsing,et al.  Coke deposits on H-ZSM-5 zeolite , 1989 .

[41]  S. Wong,et al.  In situ Fourier transform i.r. observation of methylating species in ZSM-5 , 1986 .

[42]  A. Miyamoto,et al.  Methanol conversion to hydrocarbons on novel vanadosilicate catalysts , 1985 .

[43]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5: II. Olefin distribution , 1984 .

[44]  K. Chao,et al.  Catalytic and Physical Properties of Silicon-Substituted Alpo4-5 Molecular Sieves , 1989 .

[45]  R. Dessau On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins , 1986 .

[46]  P. B. Venuto,et al.  Organic Catalysis over Crystalline Aluminosilicates , 1968 .

[47]  E. Munson,et al.  In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite HZSM-5 , 1992 .

[48]  P. Magnoux,et al.  Coking and deactivation of zeolites: Influence of the Pore Structure , 1989 .

[49]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5. I: Effect of temperature and zeolite SiO2/Al2O3 , 1984 .

[50]  Z. Gabelica,et al.  Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites: A comparative study of the formation and stability of coke deposits , 1981 .

[51]  L. B. Sand,et al.  Crystallization of EU—1 and EU—2 in alkali and alkali-free systems , 1985 .

[52]  Synthesis and study of catalytic properties of beryllium silicates having zeolite-type structure , 1985 .

[53]  A. Miyamoto,et al.  Highly selective synthesis of light olefins from methanol on a novel Fe-silicate , 1986 .

[54]  J. Bilbao,et al.  Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process , 1994 .

[55]  G. Maria,et al.  A kinetic model for methanol conversion to hydrocarbons , 1983 .

[56]  A. Auroux,et al.  Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite , 1982 .

[57]  Y. Murakami,et al.  Acid-leached dealuminated mordenite: effect of acid concentration on catalyst life in methanol conversion , 1989 .

[58]  A. Holmen,et al.  Influence of Coke Deposition on Selectivity in Zeolite Catalysis , 1997 .

[59]  K. Lammertsma,et al.  Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 .fwdarw. C2 conversion , 1984 .

[60]  M. Misono,et al.  Catalysis by heteropoly compounds x. Synthesis of lower olefins by conversion of dimethyl ether over 12-tungstophosphates , 1986 .

[61]  D. Bibby,et al.  Effects of Coke Formation and Removal on the Acidity Of ZSM-5 , 1987 .

[62]  Tomoyuki Mori,et al.  Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite , 1981 .

[63]  A kinetic model for methanol conversion to hydrocarbons , 1981 .

[64]  H. V. Bekkum,et al.  Conversion of ethanol over zeolite h-zsm-5 in the presence of water , 1982 .

[65]  G. Froment,et al.  Catalytic conversion of methanol into light alkenes on mordenite-like zeolites , 1993 .

[66]  Ronghui Wang,et al.  CHARACTERISTICS AND PERFORMANCE OF SAPO-34 CATALYST FOR METHANOL-TO-OLEFIN CONVERSION , 1990 .

[67]  C. Chang A reply to Kagi: Mechanism of conversion of methanol over ZSM-5 catalyst , 1981 .

[68]  S. M. Csicsery Catalysis by shape selective zeolites-science and technology , 1986 .

[69]  J. Klinowski,et al.  Carbon-13 and proton magic-angle-spinning NMR studies of the conversion of methanol over offretite/erionite intergrowths , 1992 .

[70]  Kunio Suzuki,et al.  Effect of crystallization time on the physicochemical and catalytic properties of a ZSM-5 type zeolite , 1988 .

[71]  A. Cheetham,et al.  A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins , 1996 .

[72]  V. A. Poluboyarov,et al.  ESR studies of coke formation on zeolite catalysts for methanol conversion , 1987 .

[73]  L. Rollmann Systematics of shape selectivity in common zeolites , 1977 .

[74]  J. Nagy,et al.  In situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-n.m.r. spectroscopy , 1982 .

[75]  M. M. Wu,et al.  Reaction of carbenoid species diazomethane decomposition over zeolite ZSM-5 , 1985 .

[76]  W. Herzog,et al.  C2–C4-Olefine durch Umsetzung von Methanol an kleinporigen Zeolithen† , 1982 .

[77]  Ivar M. Dahl,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol , 1994 .

[78]  D. Kagi In re: Mechanism of conversion of methanol over ZSM-5 catalyst , 1981 .

[79]  T. Inui,et al.  New aspects in catalytic performance of novel metallosilicates having the pentasil pore-opening structure , 1986 .

[80]  K. G. Ione,et al.  Study of stability and selectivity of catalytic action of ZSM-type zeolites in methanol transformation , 1984 .

[81]  R. Anthony,et al.  CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT OLEFINS , 1980 .

[82]  W. Wieker,et al.  Coupled conversion of methanol and C4-hydrocarbons (CMHC) on iron-containing ZSM-5 type zeolites , 1990 .

[83]  T. Sodesawa Methanol conversion to lower hydrocarbons over proton exchanged NaY zeolite catalysts , 1986 .

[84]  D. Walsh,et al.  Shape selectivity and carbon formation in zeolites , 1979 .

[85]  W. Drenth,et al.  Zeolite H-ZSM-5 as a pseudo-transition metal , 1983 .

[86]  W. Garwood,et al.  Industrial Application of Shape-Selective Catalysis , 1986 .

[87]  G. Froment,et al.  Deactivation of zeolite catalysts by coke formation , 1990 .

[88]  G. Hutchings,et al.  Hydrocarbon formation from methanol and dimethyl ether using WO3/Al2O3 and H-ZSM-5 catalysts. A mechanistic investigation using model reagents , 1988 .

[89]  V. Choudhary,et al.  Effect of degree of H+ exchange on the acidity distribution of HNaZSM5 , 1985 .

[90]  Dan Fǎrcaçsiu Methyl group interchange in the conversion of dimethylether to ethylene , 1983 .

[91]  Clarence Dayton Chang,et al.  A kinetic model for methanol conversion to hydrocarbons , 1980 .

[92]  E. Schreier,et al.  Synthesis of olefins from methanol on SiO2 supported Ag4 (SiW12O40) catalysts , 1987 .

[93]  W. W. Kaeding,et al.  Production of chemicals from methanol: I. Low molecular weight olefins , 1980 .

[94]  Y. Murakami,et al.  Development of long-life dealuminated mordenite for methanol conversion to hydrocarbons. , 1987 .

[95]  J. Klinowski,et al.  Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR , 1989, Nature.

[96]  J. Anderson,et al.  Activation of ZSM-5 catalysts , 1980 .

[97]  M. Tsutsumi A Study of correlations among various measurements concerning the Indian craniums , 1984 .

[98]  G. Hutchings,et al.  Methanol conversion to hydrocarbons using modified clinoptilolite catalysts: Investigation of catalyst lifetime and reactivation , 1988 .

[99]  Modelling methanol conversion to hydrocarbons : revision and testing of a simple kinetic model , 1990 .

[100]  B. Sulikowski,et al.  Conversion of methanol on ultrastable faujasitic catalysts. Selective formation of hexamethylbenzene , 1988 .

[101]  Gheorghe Niculae,et al.  Coke deposits formation and products selectivities for the MTG process in a fluidized bed reactor , 1989 .

[102]  J. Weitkamp New Directions in Zeolite Catalysis , 1991 .

[103]  A. Martín,et al.  Coupled conversion of methanol and C4 hydrocarbons to lower olefins , 1989 .

[104]  J. Nagy,et al.  Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite , 1978 .

[105]  R. Darcy,et al.  Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis , 1986 .

[106]  E. Onderka,et al.  Partial removal of coke from HZSM-5 by alkane treatment : Catalysis on Solid Acids and Bases , 1996 .

[107]  V. Bosacek Formation of surface-bonded methoxy groups in the sorption of methanol and methyl iodide on zeolites studied by carbon-13 MAS NMR spectroscopy , 1993 .

[108]  G. Froment,et al.  Production of light alkenes from methanol on ZSM-5 catalysts , 1991 .

[109]  Kunio Suzuki,et al.  Influence of the synthesis conditions of H-ZSM-5 on its physical properties and catalytic activity in methanol conversion: the water content of the reaction mixture , 1987 .

[110]  T. Sano,et al.  Synthesis of Light Olefins from Methanol Using ZSM-5 Type Zeolite Catalysts , 1992 .

[111]  P. Salvador,et al.  Surface reactivity of zeolites type H-Y and Na-Y with methanol , 1977 .

[112]  Tomoyuki Mori,et al.  The Autocatalytic Nature of Methanol Conversion over ZSM-5 Zeolites , 1979 .

[113]  P. Nelson,et al.  Computer Simulated Deactivation of A Zeolite with Randomly Distributed Catalytic Sites , 1991 .

[114]  A. Al-Jarallah,et al.  Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes , 1997 .

[115]  Roger Hunter,et al.  Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products , 1990 .

[116]  Gheorghe Maria,et al.  "Kinetic model for methanol conversion to olefins" with respect to methane formation at low conversion. Reply to comments , 1987 .

[117]  J. Klinowski,et al.  Solid-state NMR studies of the shape-selective catalytic conversion of methanol into gasoline on zeolite ZSM-5 , 1990 .

[118]  M. Sayed,et al.  A mechanism for methanol conversion over HZSM-5 catalyst , 1982 .

[119]  T. Inui,et al.  Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion , 1997 .

[120]  Coke formation in high-silica zeolites , 1992 .

[121]  G. Hutchings,et al.  Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5. Comments on the mechanism of carbon–carbon bond and methane formation , 1987 .

[122]  Sukumaran Vasudevan,et al.  Methanol-to-gasoline(MTG)conversion over ZSM-5. A temperature programmed surface reaction study , 1996 .

[123]  J. Klinowski,et al.  In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34 , 1990 .

[124]  S. Cȩckiewicz Methanol conversion to hydrocarbons and dimethyl ether on decationized zeolite T , 1981 .

[125]  R. Espinoza Catalytic conversion of methanol to hydrocarbons: Autocatalysis reconsidered , 1986 .

[126]  D. Bibby,et al.  Coke formation in zeolite ZSM-5 , 1986 .

[127]  Gheorghe Maria,et al.  Kinetic model for methanol conversion to olefins , 1983 .

[128]  F. Wunder,et al.  Ein selektiver Weg zu Ethylen und Propen aus Methanol , 1980 .

[129]  Kazuhiro Kato,et al.  Mordenite with long life and selectivity for methanol conversion to gasoline: mordenite modified by barium ion exchange, dealumination and chemical vapor deposition of silicon methoxide , 1990 .

[130]  O. Kikhtyanin,et al.  Methanol conversion on aluminophosphates with zeolite structure , 1988 .

[131]  A. Auroux,et al.  The effect of boron on ZSM-5 zeolite shape selectivity and activity: II. Coincorporation of aluminium and boron in the zeolite lattice , 1989 .

[132]  G. Olah Higher coordinate (hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons , 1981 .

[133]  J. Nováková,et al.  Intermediates in methanol and ethanol transformation on HZSM-5 zeolite studied by chemical trapping and deuterium labeling , 1988 .

[134]  C. O'connor,et al.  Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34 , 1996 .

[135]  J. Bilbao,et al.  Deposition and Characteristics of Coke over a H-ZSM5 Zeolite-Based Catalyst in the MTG Process , 1996 .

[136]  J. Nováková,et al.  Catalytic activity of dealuminated Y and HZSM-5 zeolites measured by the temperature-programmed desorption of small amounts of preadsorbed methanol and by the low-pressure flow reaction of methanol , 1984 .

[137]  Clarence Dayton Chang,et al.  The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects , 1977 .

[138]  S. Cȩckiewicz Conversion of methanol into light hydrocarbons on erionite–offretite(T) zeolite , 1984 .

[139]  R. Cooney,et al.  A Fourier-transform infrared spectral study of H-ZSM-5 surface sites and reactivity sequences in methanol conversion , 1984 .

[140]  P. Reich,et al.  Synthesis of olefins from methanol on alumina-supported H4[SiW12O40] catalysts , 1987 .

[141]  M. Nitta,et al.  Catalytic activity and selectivity of modified clinoptilolites for conversion of methanol to light olefins , 1985 .

[142]  C. Chu,et al.  Carbene intermediates in methanol conversion to hydrocarbons. Reply to Van Hooff , 1983 .

[143]  M. Guisnet,et al.  Selectivity of the dimethylether to hydrocarbons conversion on various zeolites , 1981 .

[144]  R. D. Shannon,et al.  Properties of boron-substituted ZSM-5 and ZSM-11 zeolites , 1987 .

[145]  J. Nagy,et al.  A 13C-N.M.R. investigation of the conversion of methanol on H-ZSM-5 in the presence of carbon monoxide , 1979 .

[146]  B. Gates,et al.  Diffusion, Reaction, and Fouling in H-Mordenite Crystallites. The Catalytic Dehydration of Methanol , 1972 .

[147]  G. Olah,et al.  Onium ylide chemistry. II: Methylenedialkyloxonium ylides , 1984 .

[148]  L. Riekert,et al.  Formation of ethene and propene from methanol on zeolite ZSM-5: I. Investigation of Rate and Selectivity in a Batch Reactor , 1988 .

[149]  T. Mole Conversion of methanol to ethylene over ZSM-5 zeolite: A reexamination of the oxonium-ylide hypothesis, using 13carbon- and deuterium-labeled feeds , 1983 .

[150]  G. Froment,et al.  Zeolite catalysis in the conversion of methanol into olefins , 1992 .

[151]  R. Huisgen Altes und Neues über aliphatische Diazoverbindungen , 1955 .

[152]  J. Futrell,et al.  Evidence for complex formation in the reactions of CH+ 3 and CD+ 3 with CH3OH, CD3OD, and C2H5OH , 1976 .

[153]  S. A. Tabak,et al.  Conversion of methanol over ZSM-5 to fuels and chemicals , 1990 .

[154]  J. Batista,et al.  Acidity and Catalytic Activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AIPO4-5, and AIPO4-14 Molecular Sieves in Methanol Dehydration , 1993 .

[155]  D. Bibby,et al.  An XPS study of coke distribution on ZSM-5 , 1988 .

[156]  G. Olah,et al.  Ylide chemistry. 3. Evidence for competing oxonium ylide formation with carbon-hydrogen insertion in Meerwein's reaction of methylene and methylene-d2 with dialkyl ethers , 1984 .

[157]  G. Hutchings,et al.  Methanol conversion to hydrocarbons over zeolite H-ZSM-5: Investigation of the role of CO and ketene in the formation of the initial C-C bond , 1993 .

[158]  H. Schulz,et al.  Comparative Investigation of Time on Stream Selectivity Changes during Methanol Conversion on Different Zeolites , 1986 .

[159]  P. Rodewald,et al.  Aromatics, light olefins and gasoline from methanol: Mechanistic pathways with ZSM-5 zeolite catalyst , 1982 .

[160]  T. Inui,et al.  Rapid synthesis of zeolite catalysts for methanol to olefin conversion by the precursor heating method , 1983 .

[161]  B. Langner Reactions of methanol on zeolites with different pore structures , 1982 .

[162]  Z. Gabelica,et al.  Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites , 1981 .

[163]  D. Akporiaye,et al.  Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction , 1996 .

[164]  J. Nováková,et al.  Reaction of Small Amounts of Methanol on Hzsm-5, Hy and Modified Y Zeolites , 1984 .

[165]  S. G. Hegde,et al.  Catalytic activity and selectivity in the conversion of methanol to light olefins , 1982 .

[166]  Arthur M. Squires,et al.  Effect of axial gas dispersion on MTO light-olefin yield: Microreactor data , 1996 .

[167]  F. Salehirad,et al.  Solid-State13C MAS NMR Study of Methanol-to-Hydrocarbon Chemistry over H-SAPO-34 , 1996 .